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1. Introduction

Music is ubiquitous in today’s world—almost everyone enjoys listening to music. With
the rise of streaming platforms, listeners now have access to more music than ever before.
While users may seemingly benefit from this plethora of available music, at the same time,
it has increasingly made it more difficult for users to explore and discover new music they
like. Personalized access to music libraries and music recommender systems aim to help
users discover and retrieve music they like and enjoy.

To this end, the field of Music Information Retrieval (MIR) strives to make music ac-
cessible to all by advancing retrieval applications such as music recommender systems,
content-based search, the generation of personalized playlists, or user interfaces that
allow visually exploring music collections [126, 414]. This includes tasks such as gath-
ering machine-readable musical data, extracting meaningful features, developing data
representations based on these features, and methodologies to process and understand
this data [169, 414]. Retrieval approaches specifically leverage these representations for
indexing music and providing search and retrieval services.

Personalized music retrieval and recommendation require incorporating information
about users and their preferences into retrieval and recommendation algorithms. Most
importantly, such user-centric MIR approaches need to capture aspects that influence
the user’s perception of music, a factor highly relevant to a user’s preference for music.
Aspects that influence human perception of music include music content (descriptors
extracted from the audio signal, such as tempo or acousticness), music context (external
factors describing the track or artist such as a track’s lyrics), user properties (compara-
tively stable, long-term descriptors of the user, such as general music preferences), and
user context (short-term, dynamic factors describing the user, such as the current ac-
tivity, occasion or emotional state) [413, 416]. These aspects are typically captured by
a user model [251]. To compute items that best meet the user’s needs and preferences,
these user models are compared with item models, which capture the characteristics of
individual items.

Current user models for personalized retrieval tasks are typically modeled rather simplis-
tically [10, 413], mostly focusing on single aspects of the user—for instance, individual
contexts such as the user’s current location [27, 96, 233, 234| or mood [33, 63, 178, 381].
As Schedl et al. [413] note, comprehensive user models are rare in MIR. Consequently,
there is not only a lack of comprehensive user models but also a lack of retrieval and
recommendation approaches that allow integrating and combining multi-faceted user and
item models.
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This habilitation thesis contributes to the field of (music) recommender systems in the
following aspects: (1) We present novel comprehensive user and item models to capture
characteristics of users, their context, and musical items. (2) We jointly leverage these
user and item models in newly designed context-aware recommender systems. (3) We in-
vestigate biases and potential unfairness in state-of-the-art recommender systems based
on the proposed multi-faceted user and item models. (4) We propose an evaluation frame-
work to conceptualize the recommendation evaluation space, enabling a comprehensive
assessment of the factors influencing recommendation performance.

The remainder of this habilitation thesis is structured as follows. Section 2 provides
an overview of current approaches in the fields of music recommender systems and user
modeling and identifies open challenges in these areas. In Section 3, we summarize the
main contributions of the publications featured in this habilitation thesis and show how
they address the challenges identified. In Part II, we present the selected papers as the
core of this habilitation thesis.



2. Background and Open Challenges

In this chapter, we present background and related work within the scope of this habil-
itation thesis. Furthermore, we identify open challenges that are (partly) addressed in
the scientific contributions of this thesis.

We first discuss core recommender systems, before focusing on user models for recom-
mender systems and fairness concerns in recommender systems research. Lastly, we
discuss the evaluation of recommender systems.

2.1. Recommender Systems

The main goal of recommender systems is to provide their users with personalized item
recommendations [190, 384|, helping them to deal with the choice overload problem [57].
The two fundamental algorithmic approaches toward computing recommendations are
collaborative filtering and content-based recommender systems.

The most widely used approach for computing recommendations is collaborative filter-
ing [402, 403|, which assumes that users who had similar preferences in the past will
also do so in future. The collective preferences of the user base are modeled in the so-
called user-item matrix. This matrix captures users’ past interactions with items, where
interactions may be explicit ratings of items (e.g., on a scale from 0 to 5) or implicit
actions like product views. The algorithmic task carried out is mainly that of matrix
completion—predicting the missing ratings in the matrix (based on e.g., neighborhood-
based approaches [335], matrix factorization [263|, or machine- and deep-learning ap-
proaches [517]). For an overview of collaborative filtering approaches, we refer to [64,
132, 190, 402, 403|.

Content-based recommender systems aim to recommend items that are similar to items
the user has liked in the past |7, 328, 348|. Therefore, items are characterized by a set of
features (for instance, in the movie domain, these features could be genre, actors, or the
plot of the movie). Based on the features of items a user has liked, a user profile is built.
Recommendations can then be obtained by computing the similarity between the given
user profile and items; recommending the most similar, yet new and relevant, items to
the user. Hybrid recommender systems aim to combine the advantages of collaborative
filtering and content-based approaches [67].

Both of these types of approaches rely on rather simple user models and ignore that users
interact with the system in specific contexts [10]. In contrast, context-aware recommender
systems [9] tailor recommendations to the contextual situation of the user. Kaminskas
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and Ricci [232] categorize context information as follows: environment-related context
(e.g., location, time, weather), user-related context (e.g., activity, demographic infor-
mation, emotional state of the user), and multimedia context (e.g., text or pictures the
user is currently viewing). The three algorithmic paradigms for computing context-aware
recommendations are contextual pre- or post-filtering and contextual modeling [9]. Con-
textual pre- and post-filtering rely on traditional models (mostly, collaborative filtering
models) and add a further data filtering step either before or after the actual recommen-
dation computation (e.g., for recommendations for a given context, pre-filtering would
remove all data collected in another context and use the remaining data as input to the
recommender system). In contrast, contextual modeling incorporates context informa-
tion directly into the model.

One of the main open challenges is to integrate available features describing users, items,
and contexts into personalized (music) retrieval systems [413]. This involves not only
comprehensive user and item models to characterize users, items, and contexts more
accurately, but also requires recommendation algorithms to integrate and jointly leverage
these models. Particularly for context-aware recommender systems, the main challenges,
as Adomavicius et al. [9] note, are in (1) incorporating context information into canonical
recommender systems, (2) leveraging context and hidden interactions between users,
items, and context for improved rating prediction, and (3) identifying relevant contextual
factors. Particularly, incorporating multiple relevant contextual signals into a music
recommender system is still an open challenge [413].

2.2. Multi-faceted User and Item Models

To this end, recommender systems mostly rely on interaction data and neglect further
information about the user and the items. While these systems are undeniably highly
successful and have reshaped the landscape of recommender systems, they are agnostic to
any further data on users and items (so-called side information [337]). For instance, we
listen to music because of its content, which may include rhythmic, timbral, and lyrical
qualities, or because of the emotions the music evokes in us. Also, we perceive music
on different levels of semantics that comprise, for instance, the listened audio signal, but
also textual or visual input [325]. These qualities are not considered in many of today’s
music recommender systems.

The facets that allow for describing users and items in the music domain more compre-
hensively, and hence, capturing the drivers of preference, are manyfold. Schedl et al. [413]
organize the factors influencing human music perception into (1) music content, (2) music
context, (3) user context, and (4) user properties. Music content refers to features that
can be extracted and retrieved from the audio signal (from low-level frequency bands or
Mel-frequency cepstrum coefficients (MFCCs) to high-level features such as danceability
or tempo). Music context describes features that are not directly tied to the audio signal.
This includes, for instance, the lyrics of a song, or further information about the artist’s
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background. User context refers to dynamic factors that describe the user—the user’s
current emotional state, their current activity, or their spatio-temporal context. User
properties, on the other hand, are more stable descriptors of a user, capturing the user’s
music taste, demographics, cultural background, personality, or musical experience.

The major challenges for user and item models are the elicitation and modeling of all
four factors influencing human music perception [414]. However, user models in (music)
information retrieval and recommender systems are very simplistic [10, 413]—despite the
fact that a rich set of item descriptors is available in the music domain. Schedl et al. [423]
consider incorporating psychological constructs such as personality and emotion as a cen-
tral future direction of music information retrieval. They furthermore note the challenge
of situation-aware music recommender systems, which require a multi-faceted user model
to describe contextual and situational preferences (as also discussed in Section 2.1). A
further challenge for the personalization of music recommendations is the fact that the
way we perceive music is also shaped by our cultural background, which requires music
recommender systems to also personalize on a cultural level [423].

2.3. Fairness in Recommender Systems

Beyond the core performance of recommender systems, there are also further factors that
need to be considered in the recommender systems ecosystem. Among those factors, the
concept of fairness is a highly significant one. Fairness captures whether a recommender
system does not discriminate on the individual or on the group level, or, put differently,
whether all individuals and groups (regardless of age, race, gender, etc.) are served with
recommendations of the same quality [134, 483]. Assessing fairness also requires iden-
tifying the different stakeholders of a recommender system (from end-users to platform
providers or, for instance, artists) to integrate the stakeholders’ perspectives and fairness
concerns |2].

From a data perspective, biases (and potential resulting unfairness) are introduced if we
work on data that is not representative of the full population. Chen et al. [89] distinguish
four types of data biases in the process of collecting data: (1) selection bias: users are
free to choose the items they rate, resulting in a non-representative sample of ratings;
(2) exposure bias: users are only exposed to a fraction of all available items and hence,
any unobserved user-item interaction does not necessarily represent a negative preference;
(3) conformity bias: users tend to behave similarly to other users, therefore their feedback
does not necessarily reflect their true preferences; and (4) position bias: users tend to
prefer items at a higher position in the list of recommendations irrespective of the item’s
real relevance.

From an algorithmic perspective, recommender systems may suffer from biases at the user
and item level (Chen et al. [89] consider these as biases in results). On the item level,
items from the long tail (i.e., unpopular items with a low number of user interactions)
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are recommended less frequently as recommender algorithms favor well-known items [4,
78, 279], known as popularity bias [3, 4]. This effect (also referred to as the Matthews
effect) is further amplified by the recommender system. On the user level, biases have
been shown to provide, for instance, users of a certain gender [145|, age group [138], or
country [415] with less accurate recommendations.

The major open challenge in this context is that we lack an understanding of the po-
tential biases involved and their impact on the recommender system. As Burke et al.
note [70], the standard procedure for establishing fairness in bias and fairness research
is to first identify discriminated individuals and groups and subsequently develop al-
gorithms that remove the identified bias. Therefore, the first step is to get a deeper
understanding of groups that are discriminated against. Such an understanding is the
prerequisite for designing recommender systems that allow mitigating these biases by
carefully considering all stakeholders of the system [2, 68, 438]. Suitable metrics also
need to be developed to formalize and quantify system fairness during the development
and evaluation process [438].

2.4. Evaluation of Recommender Systems

Evaluation of a system in development is crucial throughout the lifetime of a system—
from initial prototypes, to deployment, maintenance, and updates. Jannach et al. [217]
describe recommender systems evaluations as “methods for choosing the best technique
based on the specifics of the application domain, identifying influential success factors
behind different techniques, or comparing several techniques based on an optimality
criterion”.

In the evaluation of recommender systems, we differentiate three types of experiments:
offline experiments, user studies, and online experiments [42, 44, 154, 174, 190|. Of-
fline experiments are based on a historic, pre-collected dataset of user-item interactions.
User behavior is simulated by removing parts of the interactions (test set), computing
recommendations on the remaining data (training set) and subsequently comparing the
predicted ratings to the original ratings. Offline experiments aim to compare recommen-
dation algorithms and settings and focus on system-centric aspects [174, 190, 399|. In
contrast, user studies are conducted by recruiting human users who perform pre-defined
tasks in a laboratory setting. By observing the users’ interactions with the system and
collecting direct feedback (e.g., via surveys before, during, or after the task), the user
experience with the system is evaluated—including interaction behavior. The third ex-
periment type, online experiments, are deployed in a real-world setting, where users
perform self-selected tasks. These experiments allow for evaluating realistic scenarios by
recording user interactions and collecting direct feedback. Hence, user studies and online
experiments can be considered user-centric evaluations [174, 190, 399].
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The major challenges we (still) face in evaluating recommender systems are in performing
rigorous, systematic, and hypothesis-driven evaluations [25, 143, 207, 448]. In today’s
scientific practice, mostly a single experiment type is applied (mainly offline experi-
ments). This substantially limits the generalizability of the obtained results and may
leave further aspects unclear. Particularly, Jannach et al. [214] argue that “we should
more often follow a research approach that is guided by clear and explicit hypotheses.
These hypotheses then determine the experimental design and in particular the used
metrics.” This also requires the application of holistic and comprehensive evaluation
protocols that extend beyond offline evaluations and that integrate multiple system- and
user-centric perspectives and experiments [104, 254].






3. Contributions

The following chapter presents an overview of the papers contained in this habilitation
thesis. We describe the contributions of the individual papers, particularly regarding
the extent to which these works contribute to the problems and challenges outlined
in Section 2. The papers are grouped thematically by the challenges addressed (as
introduced in Section 2). Finally, we present further publications not included in the
thesis; albeit most of these publications also contribute to the fields of recommender
systems and music information retrieval.

3.1. Recommender Systems

Publications

[C1] M. Pichl, E. Zangerle, and G. Specht. Improving Context-Aware Music Rec-
ommender Systems: Beyond the Pre-filtering Approach. In Proceedings of the
2017 ACM on International Conference on Multimedia Retrieval, ICMR 17,
pages 201-208. ACM, 2017. DOI: 10.1145/3078971.3078980

[C2] M. Pichl and E. Zangerle. User models for multi-context-aware music recom-
mendation. Multimedia Tools and Applications, 80(15):22509-22531, 2021. DOI:
10.1007/s11042-020-09890-7

Note that [C2] is an extended version of the following publication®:

[C3] M. Pichl and E. Zangerle. Latent Feature Combination for Multi-Context Music
Recommendation. In 2018 International Conference on Content-Based Multime-
dia Indexing, CBMI 18, pages 1-6. IEEE, 2018. poI1: 10.1109/CBMI . 2018.
8516495

These works all aim to improve context-aware recommender systems by incorporating
context information directly in the recommendation algorithm in a contextual modeling
approach, allowing to incorporate one or multiple contexts to further tailor recommen-
dations towards the user, their preferences, and their current context.

'This paper won the Best Student Paper award at the International Conference on Content-Based
Multimedia Indexing (CBMI) 2018.


https://doi.org/10.1145/3078971.3078980
https://doi.org/10.1007/s11042-020-09890-7
https://doi.org/10.1109/CBMI.2018.8516495
https://doi.org/10.1109/CBMI.2018.8516495

3. Contributions

In [C1] (Chapter 4), we advance context-aware music recommender systems by proposing
a recommendation approach that directly incorporates contextual information in the com-
putation of recommendations. In contrast to the widely used pre-filtering approaches, this
approach does not require filtering user-item interactions based on the user’s context and
hence, allows using the full set of interactions for the computation of recommendations.
We extract situational information from user playlists and their names (e.g., “party”,
“workout”, or “my summer playlist”) by extracting clusters of contextually similar tracks.
This allows modeling all interactions of users with the system by <user, track, cluster,
rating> vectors. We use these vectors as input for our recommender system and employ
Factorization Machines for the prediction of ratings, which extend traditional factoriza-
tion approaches by also factorizing the interaction of variables into a lower-dimensional
space. The main contribution of this work is that it extends the previously prevalent
pre-filtering approaches for context-aware recommender systems by incorporating context
information directly into the core recommendation approach to leverage all information
available. We show that our proposed factorization machine-based recommender system
substantially outperforms context-agnostic recommender systems, pre-filtering context-
aware recommender systems as well as classification-based context-aware recommender
systems.

[C2] (Chapter 5) further extends the work in [C1] by proposing to simultaneously lever-
age multiple user and item contexts in a multi-context-aware recommender system. Our
approach leverages situational and acoustic context information to describe users and
items. We extract the situational context from playlist names (see also [C1]) to capture
the situation in which certain tracks are listened to by a user. To further capture a user’s
music preferences, we compute musical archetypes by clustering tracks via their high-level
acoustic features to describe a user’s inclination and preference for such archetypes. No-
tably, we investigate how contextual and audio characteristics (captured by the proposed
multi-context user model) may jointly be leveraged for track recommendations. The
main contributions of this paper are as follows: We propose a multi-context-aware user
model and recommender system that allows capturing a user’s preference towards cer-
tain archetypes of music (acoustic context) and contexts in which users listen to certain
tracks (situational context). We exploit interaction effects between the input variables
(user listening history, acoustic feature-based playlist archetypes, and situational con-
text) by introducing Factorization Machines for the task; i.e., we model the influence
of a certain context on the choice of tracks for a given user. In several experiments,
we show that a recommender system leveraging this proposed model substantially out-
performs a context-aware recommender system that relies on either context- or acoustic
feature-based clusters individually.

12
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3.2. Multi-faceted User and Item Models

Publications

[C4] E. Zangerle and M. Pichl. Content-based User Models: Modeling the Many Faces
of Musical Preference. In Proceedings of the 19th International Society for Music
Information Retrieval Conference, ISMIR 18, pages 709-716. ISMIR, 2018. DoOI:
10.5281/zenodo. 1492515

[C5] E. Zangerle, C.-M. Chen, M.-F. Tsai, and Y.-H. Yang. Leveraging Affective
Hashtags for Ranking Music Recommendations. IEEFE Transactions on Affective
Computing, 12(1):78-91, 2021. DOI: 10.1109/TAFFC.2018.2846596

[C6] E. Zangerle, M. Pichl, and M. Schedl. User Models for Culture-Aware Music
Recommendation: Fusing Acoustic and Cultural Cues. Transactions of the In-
ternational Society for Music Information Retrieval, 3(1), 2020. DOI: 10.5334/
tismir.37

All of these publications propose rich, multi-faceted user models to describe users and
their (context-specific) preferences more accurately, ultimately improving recommenda-
tion performance.

In [C4] (Chapter 6), we particularly address the lack of comprehensive content-based user
models. We introduce a set of user models that capture the musical preferences of users
by using content descriptors of tracks that a user has listened to. These user models aim
to capture not only the overall musical preferences of users. To describe users and their
musical preferences, we capture the musical preferences of users via content descriptors
of tracks. This is one of the rare works that aim to devise comprehensive user models
based on content descriptors. Most notably, we model user preferences probabilistically
by employing Gaussian mixture models. Our experiments show that a user model based
on a user’s specific preferences regarding different types of music models via a Gaussian
mixture model, complemented by a user’s general musical preferences achieves the best
results.

In [C5] (Chapter 7)?, we leverage tweets that describe the track a user is currently lis-
tening to and also feature a hashtag describing their emotional state (for instance, in
“#nowplaying Crazy For You by Adele #Happy”). We study the impact of adding affec-
tive context information on ranking contextual affection-aware music recommendations
tailored to the user’s current emotional state and musical preferences. Therefore, we pro-
pose modeling users, tracks, and affective hashtags in a graph and computing a latent,

2This manuscript won the Women in RecSys Journal Paper of the Year Award at the 16th ACM
Conference on Recommender Systems in 2022.
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low-dimensional representation for each node by applying a graph embedding method.
Based on these representations, we propose several novel ranking methods. We show
that in a ranking task, comparing the latent representations of users and tracks is suf-
ficient to capture the user’s general preferences. However, for context-aware ranking of
recommendations based on the user’s current affective context, sentiment information
extracted from the user’s hashtags is vital and contributes to improved, personalized
rankings and hence, recommendations. The contributions of this work lie in novel rank-
ing methods that integrate affective information extracted from social media. Particu-
larly, we learn user, item, and context representations by employing graph embedding
methods and incorporating these into the proposed ranking methods. Furthermore, we
propose an evaluation setup that allows us to investigate the extent to which a rank-
ing or recommender algorithm is able to capture the general preferences compared to
the context-specific preferences of users. Furthermore, our study is based on large-scale,
real-world data, whereas existing work mostly relies on laboratory experiments, with low
to medium sample sizes.

[C6] (Chapter 8) extends content-based user models by introducing socio-economic and
cultural aspects to the user model to also capture the cultural backgrounds of listeners.
Consequently, it becomes possible to uncover music-cultural patterns of listening that
describe the interrelationship between users, their cultural background, and the char-
acteristics of the music they listen to. Particularly, we propose a novel music-cultural
user modeling approach that allows leveraging music-cultural listening patterns in a rec-
ommender system. Therefore, we integrate information about the acoustic qualities of
the music users have listened to, and culture-specific information derived from the users’
location/country to describe the user’s likely cultural background. The two main con-
tributions of this work are: (1) We jointly use acoustic song features and culture-related
features to describe the user’s musical preferences and cultural background, and (2) we
utilize these features in a culture-aware user model and show their contribution to per-
formance in a music recommendation task based on a dataset of 55k users and 395k
listening events.

3.3. Fairness in Recommender Systems

Publications
[C7] D. Kowald, P. Miillner, E. Zangerle, C. Bauer, M. Schedl, and E. Lex. Support

the underground: characteristics of beyond-mainstream music listeners. FEPJ
Data Science, 10(1):14, 2021. DOI: 10.1140/epjds/s13688-021-00268-9
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[C8] A. B. Melchiorre, E. Zangerle, and M. Schedl. Personality Bias of Music Rec-
ommendation Algorithms. In Proceedings of the 14th ACM Conference on Rec-
ommender Systems, RecSys '20, pages 533-538. ACM, 2020. por: 10.1145/
3383313.3412223

These publications both contribute to our understanding of potential fairness issues and
biases in recommender systems.

In [C7] (Chapter 9) we investigate the characteristics of beyond-mainstream music and
its listeners and the quality of music recommendations served to beyond-mainstream lis-
teners to inform future user modeling and recommendation tasks. Therefore, we capture
a user’s mainstreaminess at the artist level by computing the correlation between a user’s
artist playcount and the global playcount per artist. In an exploratory study, we inves-
tigate the characteristics of beyond-mainstream music, its listeners, and compare the
recommendation performance for mainstream- and non-mainstream listeners. The main
contributions of this work are as follows: (1) We show that recommendations provided to
beyond-mainstream music listeners are of significantly lower recommendation accuracy
than those served to mainstream music listeners; (2) based on a novel dataset, we iden-
tify different types of beyond-mainstream music based on their acoustic features; (3) we
identify subgroups of beyond-mainstream music listeners and investigate the relationship
between openness and diversity of these subgroups and the recommendation accuracy
for these groups.

In [C8] (Chapter 10), we investigate to which extent state-of-the-art recommender algo-
rithms are prone to personality bias (i.e., providing recommendations of different quality
to user groups with different personality traits). Particularly, we analyze the perfor-
mance of these algorithms and how it differs across user groups in terms of personality
traits. This is particularly interesting as personality traits have been shown to corre-
late with music preference and usage of music. We describe the personality of users by
the OCEAN model, which describes personality traits along five dimensions: openness
to experience (conventional vs. creative thinking), conscientiousness (disorganized vs.
organized behavior), extraversion (engagement with the external world), agreeableness
(need for social harmony), and neuroticism (emotional instability). With this work, we
advance our understanding of personality bias by evaluating a set of state-of-the-art rec-
ommendation approaches for user groups exhibiting different personality profiles. The
main finding of this analysis is that there are indeed statistically significant differences
in terms of accuracy metrics (recall@k, NDCGQkE) for all traits. We observe particularly
pronounced differences in the traits of neuroticism and openness.
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3.4. Evaluation of Recommender Systems

Publications

[C9] E. Zangerle and C. Bauer. Evaluating Recommender Systems: Survey and
Framework. ACM Computing Surveys, 2022. 1sSN: 0360-0300. DOI: 10.1145/
3556536

In [C9] (Chapter 11), we survey and consolidate the current state of the art in recom-
mender systems evaluation. Most importantly, we propose the Framework for EValuating
Recommender systems (FEVR) that conceptualizes the evaluation space of recommender
systems evaluation. With FEVR, we categorize the evaluation design space and provide
a systematic overview of the essential aspects of RS evaluation and their application.
The proposed FEVR framework encompasses a wide variety of facets required when
evaluating recommender systems and can also accommodate comprehensive evaluations
that address the various multi-faceted dimensions. FEVR provides a structured basis
for adopting and describing appropriate evaluation configurations, as well as integrating
multiple evaluations and accounting for repeatability and reproducibility. It provides a
guide for systematic RS evaluation that the RS research community can build on.

3.5. Synopsis

This habilitation thesis addresses the topic of recommender systems for music retrieval
tasks. We have identified four distinct challenges in Chapter 2: core recommendation
algorithms, multi-faceted user and item models, fairness in recommender systems, and the
evaluation of recommender systems. Addressing the first challenge, we have contributed
contextual modeling recommender algorithms that allow us to directly integrate multiple
contexts. In the field of multi-faceted user and item models, we have contributed novel
data sources that allow incorporating affective and cultural contexts, and also proposed
novel modeling techniques for rich user and item characteristics. In the context of fairness
in recommender systems, we have deepened our understanding of two potential user
characteristics that may lead to biases: user personality and their tendency to listen to
mainstream music. This understanding is the prerequisite for mitigating such biases and
resulting unfairness in the next step. As a final contribution, we propose a framework for
conceptualizing the design space of recommender systems evaluations based on a survey
on recommender system evaluation.

16


https://doi.org/10.1145/3556536
https://doi.org/10.1145/3556536

3. Contributions

3.6. Further Contributions

Since receiving my PhD in 2013, I have also co-authored the following peer-reviewed
publications which are not included in this habilitation thesis.
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Abstract

Over the last years, music consumption has changed fundamentally: people switch from
private, mostly limited music collections to huge public music collections provided by
music streaming platforms. Thus, the amount of available music has increased dramati-
cally and music streaming platforms heavily rely on recommender systems to assist users
in discovering music they like. Incorporating the context of users has been shown to
improve the quality of recommendations. Previous approaches based on pre-filtering suf-
fered from a split dataset. In this work, we present a context-aware recommender system
based on factorization machines that extracts information about the user’s context from
the names of the user’s playlists. Based on a dataset comprising 15,000 users and 1.8 mil-
lion tracks we show that our proposed approach outperforms the pre-filtering approach
substantially in terms of accuracy of the computed recommendations.
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4.1. Introduction

Recently, we are facing a fundamental change in the way people consume music: more
and more people switch from private, mostly limited music collections to public music
streaming collections containing several millions of tracks [276]. People increasingly do
not store music locally on CDs and hard drives anymore. Instead, they access millions
of tracks offered by cloud-based streaming services using various devices. To increase
usability, streaming platforms heavily rely on recommender systems to help users in
discovering music they like. Previous research has shown that the context of a user (i.e.,
occasion, event or emotional state) plays an important role for providing personalized
music recommendations [241, 275]. Kamalzadeh et al. [228] showed that people listen to
different music during different activities and found that people organize tracks in their
music collections by the intended use (i.e., working or exercising). This finding is backed
up by Cunningham et al. [109], who found that people create playlists that are intended
for certain activities.

Over the last years, data for quantitatively validating these studies became available:
music streaming platforms provide means for “social playlist generation”—playlists that
are shared among friends or to the public. Particularly public playlists serve as an
essential new data source for music recommender systems. For Spotify!, a popular music
streaming service, all user-created playlists are public by default? and thus can be crawled
using the Spotify API?. Pichl et al. [361] propose an approach for clustering contextually
similar playlists by exploiting the names of these playlists. The clusters are then leveraged
in a collaborative filtering recommender system (CF) with pre-filtering [11], hence CF
is applied to each cluster individually. Thus, the recommender system is applied to
different parts of the dataset in isolation, a method that has drawbacks: the user profiles
are split up among the different clusters and thus, there is no holistic view on the user.
In addition, recommendation accuracy substantially varies among clusters, as these are
different in size.

In this work, we follow up and complement the research of Pichl et al. [361] by utilizing
their proposed playlist aggregation pipeline to implement a novel recommender system
to overcome the drawbacks of contextual pre-filtering. Particularly, we are interested
in how contextual clusters may be leveraged for music recommendations while ensuring
that the drawbacks of the pre-filtering approach can be avoided. Therefore, we propose
to make use of Factorization Machines (FM) [371] that are directly able to incorporate
the contextual clusters extracted from the names of playlists for the computation of
recommendations.

"http://www.spotify.com

thtps ://developer.spotify.com/web-api/working-with-playlists/#public-private-and-
collaborative-status

3http://developer.spotify.com/web-api/
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In several empirical experiments using k-fold cross-validation we show that our proposed
factorization machine-based recommender system outperforms context-agnostic recom-
mender systems, pre-filtering context-aware recommender systems as well as classification-
based context-aware recommender systems substantially in terms of recall, precision and
the Fj-measure. Our experiments show that factorization machines are particularly capa-
ble of tackling the major issue of the pre-filtering approach (i.e., splitting up the dataset).
To foster reproducibility and repeatability, we make both our code and data used publicly
available by publishing our recommender system and the evaluation framework utilized
in this paper on GitHub?.

The remainder of this paper is structured as follows. In the next section, we focus on
related work before presenting our recommendation approach in Section 4.3. After that,
we introduce the reader to our conducted experiments aiming to benchmark different
recommendation systems including our proposed recommender system. In the subsequent
sections, we present the results of the experiments and discuss them in Section 4.5.
Finally, we wrap up our work in Section 4.6.

4.2. Related Work

We classify related work into two main fields of research: context-aware music recom-
mender systems and approaches concerned with leveraging new data sources for music
recommendations.

It is widely agreed upon the fact that the user’s context improves personalized rec-
ommendations [11]. This is why we can see a shift from purely content- or CF-based
approaches towards more user-centric approaches incorporating the user’s context [413].
In the field of music recommender systems, studies showed that users often seek for music
that matches their current context (i.e., occasion, event or emotional state) [241, 275]. As
for the different types of contexts, Kaminskas and Ricci [232] distinguish environment-
related context (location, time, weather), user-related context (activity, demographic
information, emotional state of the user) and multimedia context (text or pictures the
user is currently reading or looking at). Examples for contextual information that is
leveraged for music recommendations are emotion and mood [33, 63, 178, 381], the user’s
location |27, 96, 233, 234] or recommending music fitting to documents on the web a
user reads at the moment [71]. As for the integration of contextual information into
a recommender system, Adomavicius et al. [11] classify approaches modeling the user’s
context into contextual pre-filtering, contextual post-filtering and contextual modeling
approaches. We consider the approach presented in this work as a contextual modeling
approach as we do not filter the input or output data of the system.

‘https://github.com/dbis-uibk/MusicRecommenderEvaluator/
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As for music recommender systems based on novel publicly available data, Zangerle
et al. [507] propose a music recommender system based on association rules computed
based on user listening behavior extracted from #nowplaying tweets (tweets in which
users state which musical track they are listening to at the moment). Moreover, context-
aware approaches for music recommendations that are based on information extracted
from public data sources have been proposed. Schedl and Schnitzer exploit #nowplay-
ing tweets enhanced with acoustic features extracted from 7digital® and extract context
information about these tracks by utilizing a web search on the track and artist [420].
In [422], Schedl et al. explore the use of geospatial information for a set of collaborative
filtering approaches. Furthermore, also LastFM has been utilized for analyzing the lis-
tening behavior of users [182, 408|. Pichl et al. [361] extract contextual information from
the names of playlists of Spotify users and incorporate these in the process of recom-
mending tracks. The work presented in this paper builds upon this approach and aims
to address the problems of the pre-filtering approach (as proposed by Pichl et al.) by
using factorization machines. To the best of our knowledge, this is the first factoriza-
tion machine-based recommendation approach for integrating contextual clusters derived
from playlist names into a music recommender system.

4.3. Methods

In this section, we present our proposed recommendation algorithm. First, we introduce
the approach taken for computing clusters of contextually similar tracks. In a next step,
we present the proposed recommendation framework, which leverages the information
provided by these contextual clusters. Figure 4.1 depicts the overall workflow for the
computation of music recommendations utilizing contextual clusters.

As the approach taken for computing contextual clusters relies on the work of Pichl et
al. [361], we naturally utilize the same dataset for evaluating our approach (and compar-
ing it to the original approach). This dataset contains 143,528 unique playlists created by
15,345 unique users who listened to 1,878,457 tracks in the form of <user, track, artist,
playlist>-quadruples.

4.3.1. Playlist Aggregation and Cluster Generation

In a first step, we compute clusters of contextually similar playlists based on the context
information extracted from the names of playlists. Therefore, we follow the method
introduced by Pichl et al. [361], which we will shortly sketch in the following. As depicted
in Figure 4.1, we firstly stem all playlist names and lemmatize the tokens in a first step.
In a next step, we remove non-contextual terms such as genre, artist and track names as
well as general stop words, as these do not contain any contextual information. We use
the resulting bags of lemmata describing each playlist to compute the term frequency-

Shttp://www.7digital.com
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Figure 4.1.: Pipeline for Computing Recommendations.

inverse document frequency (tf-idf) [440| for each bag of lemmata representing a playlist
name. Using tf-idf, we represent each playlist as a vector containing the tf-idf weights.
This allows us to compute playlist similarities by computing the pairwise cosine similarity
of the playlist vectors. Using the computed similarities, we span a distance matrix and
finally find contextually similar playlists by applying k-Means to the playlists in the
matrix. As we evaluate our approach using the same dataset as Pichl et al. [361], we set
the number of clusters to k = 23, as proposed in the original approach. In the next step,
we integrate the contextual clusters in the recommendation computation as presented in
the following section.

4.3.2. Recommendation Computation

Our proposed recommendation approach aims to provide track recommendations for a
given user in a given context. Particularly, we aim to model users by the tracks they
listened to and enrich this information with the contexts in which each individual user
has listened to those tracks. For the given input dataset, we assume that by adding
a track to a playlist, the user expresses some preference for the track. For means of
simplicity, we will describe a user-track interaction extracted from a playlist as “a given
user listened to a given track”. Furthermore, we infer from previous findings [109, 228|,
that user create playlists to listen to the contained tracks in the context specified by the
playlist name.
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The initial input dataset contains <user,track, playlist>-triples. We transform this
dataset into a set of <wuser,track,context cluster>-triples by applying the clustering
method presented in Section 4.3.1 and assigning each user-track pair with one of the 23
contextual clusters in which the given user has listened to the given track. By adding a
fourth factor rating to the dataset, we transform the recommendation computation task
into a rating prediction task: for each unique <user, track, context cluster>-triple, the
rating ri; is 1 if the user u; has listened to the track ¢; in cluster ¢;. Our dataset does
not contain any implicit feedback by users (i.e., play counts, skipping behavior, session
durations or dwell times during browsing the catalog). Therefore, we cannot estimate
any preferences towards an item a user not listened to as proposed by [199]. Thus, for
each <user,track, context cluster> combination for which we cannot obtain a rating
for, we assume the rating to be 7 = —1 (as proposed by [199]). The rating r;; for each
user u;, track t; and cluster ¢, can now defined as stated in Equation 4.1. Although
there is a certain bias towards negative values as some missing values might be positive,
Pan et al. [341] found that this method for rating estimation works well.

1 if u; listened to t; in ¢
Tijk = { Z ’ (4.1)

—1 otherwise

To get a better understanding of the resulting dataset, we depict a sample of the dataset
in Table 4.1. Based on this dataset, we train a classifier that decides whether a user has
listened to a track in a contextual cluster or not. For this computation, we require a
given user, track and cluster as input.

As for the actual computation of recommendations, we opt for factorization machines
(FM) (371, 373], as these can be considered as state-of-the-art recommendation approach
and have been shown to perform well for recommender systems [373]. FMs are a gen-
eralization of factorization models and allow to model interactions of input variables in
a lower-dimensional space (i.e., interactions are mapped onto a latent features-space of
lower dimension). As we aim to exploit the interaction effects of users, tracks and clusters
with this recommender system, we chose to utilize a FM of the order d = 2 modeling all
single and pairwise interactions between input variables as depicted in Equation 4.2.

n m m
TRM = Wo + Z w;T; + Z Z (ﬁ;, v_})xim’j (4.2)
=1

i=1 j=i+1

Equation 4.2 shows that a FM computes rating predictions by modeling a global bias
(wo), the influence of the user, track as well as the clusters (D ", w;z;) along with
the quadratic interaction effects of those (3 1%, D77, (v, vj)). However, instead of
learning all weights w; ; for the interaction effects, a FM relies factorization to model the
interaction as the inner product of low dimensional vectors ((vj, v;)) [373].
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To estimate the performance of the presented recommender systems we conduct a set of
experiments as described in the following section.

4.4. Experiments

In this section, we introduce the experiments conducted to evaluate the proposed ap-
proach and the baseline approaches aiming at answering our research questions. We
start with a description of the dataset used for the evaluation before focusing on the
experimental setup and the evaluation measures.

4.4.1. Dataset

For our experiments, we apply the proposed clustering method on the initial dataset and
reshape the input dataset into a set containing <user, track, context cluster, rating>-
quadruples. We assign each track in a playlist with a rating value as described in Sec-
tion 4.3.2. The rating indicates whether a certain user listened to a certain track in a
certain cluster (r = 1) or not (r = —1). A fragment of the dataset is shown in Table 4.1.
This excerpt shows that user 872 has listened to track 250246 in contextual cluster 0,
whereas user 911 has listened to track 250246 in context 2. This dataset forms the
foundation for our experiments, which are presented in the next section.

User Track Contextual Cluster r

872 309275 0 1
872 309275 1 -1
911 250246 0 -1
911 250246 0 -1
911 250246 2 1

Table 4.1.: Dataset Fragment.

4.4.2. Baseline Recommender Systems

We compare our proposed FM approach to three baseline recommender systems: a
CF-based system, a SVD-based system and a classification-based system. To incor-
porate context information in the CF- and SVD-based baseline approaches, we apply
pre-filtering [11], where the computation of recommendations (CF or SVD) is performed
on each contextual cluster individually. L.e., we compute the recommendations on a sub-
dataset of the dataset restricted to a certain cluster. The classification-based system uses
the computed contextual clusters as an input feature to the classifier. With those sys-
tems, we benchmark classical CF, approaches facilitating latent features (considered as
state-of-the art in recent years) and a classification-based approach against our proposed
factorization machine-based recommender system.

33



4. Improving Context-Aware Music Recommender Systems

The first recommender system to benchmark is a collaborative filtering approach |[7].
The idea behind CF is to recommend items the k-nearest neighbors of a user interacted
with. For determining the nearest neighbors, we compute pairwise user similarities by
computing the Jaccard Coefficient [204] of the set of tracks each of the two users listened
to. Thus, we measure the number of commonly listened tracks in relation to the tracks
both users listened to as depicted in Equation 4.3, where we denote S; as the set of tracks
a user ¢ has listened to.

S; NS
Jaccard; ; = lSUSj} (4.3)
i)

The second baseline recommender system is based on singular value decomposition
(SVD) [262]. SVD predicts ratings by extracting a number of latent features from the
user-item matrix R. In our setting, this is a sparse matrix containing all the binary rat-
ings 7;; (cf. Equation 4.1) of all users u; and the tracks t; they listened to. These latent
features, characterizing types of tracks, are computed by factoring the user-item matrix
R into two matrices U and V', which represent the user and item factors. Hence, R is the
cross product of U and V' (R = UV'). We approximate U and V' by minimizing the error
to the known ratings r;; using stochastic gradient descent optimization (SGD) [262].

Thirdly, we aim to compare our proposed approach with a classification-based recommen-
dation approach as the performed recommendation computation can also be considered
as a one-class classification problem [341]. Therefore, we implement a random forest
classifier [287| as it has two main advantages: firstly, we only have to tune one param-
eter: the number of trees [339]. Secondly, all trees can be computed in parallel and the
algorithm scales linearly with the number of trees.

Furthermore, we compare all recommender system to a random-choice baseline. The
assumption behind this baseline is that the fundamental chances of guessing whether a
track was listened by a user (r = 1) or not (r = —1) is 50%. Thus, the random baseline for
the precision measure is 0.5. The same holds for RMSE and MAPE, where the random
baseline is also 0.5. For the recall measure we cannot state a single baseline value, as
recall is dependent on the number of recommendations n as explained in Section 4.4.4
and shown in Equation 4.8.

A detailed description of the evaluation is given in the next section.

4.4.3. Experimental Setup

To evaluate the performance of the different recommender systems, we conduct a 5-fold
cross-validation. Therefore, we randomly split the dataset into five folds of equal size.
Subsequently, we utilize four folds as training data and the remaining fold as test data.
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This process is repeated 5 times such that every fold serves as test data once. Due to the
random selection of data for the folds, each fold contains an arbitrary number of relevant
and irrelevant items. The relevant items are tracks a user has listened to within a certain
cluster, whereas the latter are items a user did not listen to at all within a cluster.

For assessing the rating prediction performance of the different recommender systems, we
compute the predicted rating 7 for each track in the current test set. Using the predicted
ratings 7 as well as the actual ratings r in the test set, we compute the evaluation
measures as described in Section 4.4.4. These evaluation measures are computed for
each fold separately and before computing the measures, we perform a min-max scaling.
For the results in Section 4.5, we compute the average across all folds.

For evaluating the top-n recommendations performance, we sort the result by the pre-
dicted rating 7 and subsequently use the top-n recommended tracks for the evaluation.
We compare 7 to the actual rating r for the current user, track and cluster in the test
set. For this comparison, we assume all track recommendations with 7 > 0.5 as relevant
for the user in the given context and hence, 7 = 1.

As for the learning method utilized for the FM, we make use of Markov Chain Monte
Carlo (MCMC) inference as proposed by Rendl et al. [371]. Generally, we tuned each
of the recommender systems (except the random baseline), using k-fold cross-validation.
For the random forest classifier, we train the random forest classifier with 1,000 trees. In
preliminary experiments, we found that this is a sufficient number of trees to get stable
results. Similarly, in our preliminary experiments we found that for CF, n = 30 and for
SVD, k = 50 are suitable parameter options.

4.4.4. Evaluation Measures

In this section, we elaborate on the evaluation measures used for assessing the perfor-
mance of the different recommendation algorithms.

For assessing the rating prediction task, we compute the different widely used error
measures: root mean square error (RMSE) as well as the mean absolute percentage error
(MAPE) as stated in Equations 4.4 and 4.5, where 7 is the predicted rating and r the
actual rating as contained in the test set. For the results stated Table 4.2, we compute
the average error among all ratings r; in the test set. Please note that for computing the
error measures, we scaled the predicted rating 7 between 0 and 1 using min-max scaling
to be able to directly compare the evaluated approaches.

n )2
RMSE = M (4.4)
n
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n

MAPE = % Z
=1

r; —72‘

(4.5)

i

For measuring the performance of the top-n recommendations, we rely on recall, precision
and the Fj-measure. For computing the recall-measure, we have to classify the tracks
in the test set into relevant and non-relevant items. We consider an item as relevant,
if the user has listened to this track in a certain cluster and thus » = 1. An item is
considered as non-relevant for a given user if the user did not listen to it in a given
cluster and thus, » = —1. For a certain user, a track can be relevant in certain clusters
and simultaneously not relevant in other cluster. In case of the FM-based recommender,
we have to transform the rating prediction task into a one-class classification task [341]
on whether a given track relevant or not relevant for a given user in a given context to
be able to compute the top-n measures. Therefore, we consider 7 as 1 if the computed
probability that a user interacted with an item P(r = 1) is higher than 50% as stated
in Equation 4.6. As for the ranking, we rely on the predicted rating for ranking the
recommendations to be able evaluate the top-n recommendations.

(4.6)

—1 otherwise

f_{ 1 if P(r=1)>05

In Equations 4.7 and 4.8 we state how precision (P) and recall (R) are computed. Preci-
sion measures the number of true positives (TP) in relation to the number of recommen-
dations m, which is the number of true positives plus the number of false positives (FP).
We consider all items where » = # = 1 as true positives. In contrast, Recall measures
the ratio of true positives and the number of relevant items in the test set (RIT). These
relevant items are the items a user has listened to in the given context and hence, have
the rating r = 1. This recall computation implies that there is natural a cap of the recall
determined by the number of recommendations n. The maximum recall is 777. Hence,
a low number of recommendations n naturally implies a low recall R.

TP

P=Tprp (47)
TP
= — 4.
R RIT (4.8)

For assessing the overall precision, recall and Fj-measure of the evaluated recommender
systems, we compute the measures for each individual fold and compute the average
among all users in a final step. We elaborate on the results of the presented evaluation
in the following section.
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4.5. Results and Discussion

Based on the evaluation setup and measures described in the preceding section, we as-
sess the performance of the following recommender systems: a pure CF-based recom-
mender system (CF), context-aware CF with pre-filtering (PR-CF) as proposed by Pichl
et al. [361], a SVD-based recommender system (SVD), a context-aware SVD-based rec-
ommender system with pre-filtering (PR-SVD), a context-aware random forest classifier-
based recommender system (RF) as well as our proposed context-aware FM-based recom-
mender system (FM). As outlined in Section 4.4.2, we consider the first five recommender
systems as baseline approaches to our FM-based recommender. Additionally, we compare
all recommender system against the random baseline (RB).

As described in Sections 4.4.3 and 4.4.4, we evaluate the rating prediction task and the
top-n recommendations. Analogously to the previous section, we start with discussing
the rating prediction before analyzing the top-n recommendations task.

Recommender RMSE MAPE

CF 0.921 0.424
Pre-filtering CF 0.914 0.418
SVD 0.913 0.417
Pre-filtering SVD 0.914 0.418
RF 0.520 0.209
FM 0.560 0.282

Table 4.2.: Evaluation of the Rating Prediction Task (all Tracks).

The results of the rating prediction task applied to all items in the test set are stated
in Table 4.2. We find that with respect to the rating prediction task, the presented
classifier-based context-aware approaches (RF and FM) clearly outperform all other ap-
proaches. RF and FM reach a RMSE of 0.520 and 0.560 and a MAPE of 0.209 and 0.282,
respectively. The proposed baseline approaches reach RMSE values of > 0.9 and MAPE
values of > 0.4. However, we also observe that none of the algorithms outperforms the
random baseline of 0.5 w.r.t. RMSE (in contrast to MAPE). We lead this back to the
fact that as RMSE naturally is more sensitive to high deviations between r and 7. Fur-
thermore, the high error rate can also be explained by the fact that there are far more
tracks a user did not listen to in a given cluster than tracks a user did actually listen
to in a given cluster (i.e., the underlying matrix is highly sparse). Therefore, computing
the error measures incorporating all tracks in the data leads to results biased towards
imprecise rating predictions of low ranked (and hence, irrelevant) items. As the majority
of tracks within our dataset are not relevant for a given user in a given context, eval-
uating RMSE and MAPE of all tracks within the dataset naturally includes tracks are
not relevant for a user. Our recommender systems considers all tracks with a predicted
rating 7 < 0.5 as irrelevant to the user and these tracks are naturally not shown in the
list of recommendations. We argue that the error for tracks with ratings 7 < 0.5 are
irrelevant for ranking the tracks on the recommendation list. To illustrate this bias we
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repeat the experiment for all tracks the recommendation algorithms consider as relevant
for the user (i.e., tracks with a predicted rating of # > 0.5 after the min-max scaling).
The results of this evaluation are depicted in Table 4.3.

Recommender RMSE MAPE

CF 0.389 0.151
Pre-filtering CF 0.143 0.021
SVD 0.366 0.177
Pre-filtering SVD 0.939 0.927
RF 0.415 0.172
FM 0.380 0.221

Table 4.3.: Evaluation of the Rating Prediction Task (relevant Tracks).

When considering only tracks with a predicted rating of # > 0.5, the results show that
all algorithms except pre-filtering SVD outperform the baseline. The SVD-based recom-
mender system even performs better than the RF-based one and slightly outperforms our
proposed FM-based recommender. Furthermore, in this scenario, applying pre-filtering
to CF improves results.

However, we argue that for the use cases we discuss later in this section, the top-n-
recommendations evaluation is of higher importance as a user-centric evaluation that
measures the utility of the top-n recommendations provided to the user is vital and of
higher importance than actual error rates. Particularly, we argue that a top-n perfor-
mance for low n is vital for users. Hence, we are particularly interested in the performance
of the proposed recommendation approaches for lower n. Hence, not the precise rating
prediction is crucial but ranking the track, such that the most relevant tracks for a user in
a given context are listed within the top-n recommendations. This is, as the recommender
system computes the list by sorting all potential track recommendations descending by
the predicted rating 7 and returns the top-n tracks based in this list. Amongst others,
in the remainder of the this section we empirically show the discrepancy between rating
prediction accuracy and top-n prediction accuracy: although the RMSE and MAPE of
CF is low, even lower than using RF, the performance evaluated measuring the accuracy
of the top-n recommendations hardly outperforms the baseline.

For the presenting the results of the top-n performance evaluation of the proposed recom-
mendations task, we depict the precision- and recall-curves in the Figures 4.2a and 4.2b
forn = {1...50}. Aiming at making the performance of the recommender systems easily
comparable, we integrated both, the precision- and the recall into the F; measure and
plot the F} measure in Figure 4.3. Figure 4.2b shows that the FM, RF and SVD-based
approaches perform substantially better in terms of recall than the other baselines across
all number of recommendations n. Notably, the pre-filtering SVD approach performs
worse than the random baseline across all n. As for precision (shown in Figure 4.2a)
we detect a similar behavior. Again, pre-filtering SVD reaches substantially lower preci-
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sion values than the other approaches. Interestingly, the SVD approach performs better
than the pre-filtering SVD approach and reaches values similar to the random baseline.
The FM-based approach performs substantially better than SVD and RF, followed by
pre-filtering CF.
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Figure 4.2.: Evaluation: Recall and Precision for n = {1...50}

When examining the Fj results in Figure 4.3, we consequently observe that all approaches
outperform the baseline approach for n < 25. For n >= 25, only pre-filtering SVD
reaches F) values lower than the random baseline. Considering the precision and recall
plots of the algorithms in Figures 4.2a and 4.2b respectively, we observe that pre-filtering
SVD performs poorly independent of the evaluation measure. However, we also note
that a recommender system based on latent features computed via SVD provides ac-
curate results and reaches high recall values. From this, we derive that the implicitly
computed latent features represent track-context associations. Hence, pre-filtering limits
the amount of input data available for computing latent features. Hence, we argue that
pre-filtering SVD is not an effective approach for our recommendation task.

Moreover, we observe that all approaches besides pre-filtering SVD outperform classical
CF. However, we have to note that CF hardly beats the random baseline, for which we
assume that the chances to guess whether a track was listened by a user (r = 1) or not
(r = —1) is 50%. We lead this back to a lack of non-boolean ratings as explicit ratings
would allow a more precise computation of the user similarity and hence, more precise
recommendations. We argue that this would improve the ordering of the tracks, which
is especially crucial for the top-n recommendation task.
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Additionally our experiments show that contextual pre-filtering is beneficial for CF. Pre-
filtering CF beats the random baseline by a 46% higher Fj-score, which confirms the
results of Pichl et al. [361]. However, as we observe in Figures 4.2a and 4.2b, pre-
filtering is only highly beneficial for precision. The obtained recall value is slightly lower
for the pre-filtering CF approach than for standard CF approach (-3,08%). We suspect
two reasons for this: firstly, pre-filtering computes recommendations based on parts of the
dataset. This is beneficial for the precision, as the number of recommendation candidates
is limited. However, this configuration limits the recall. Secondly, as we compute user
similarities on a restricted amount of data, not all similarities are captured which also
possibly limits the set of possible recommendations.

Finally, we note that our proposed FM-based recommender system clearly outperforms all
other approaches including SVD and RF in terms of precision, whereas the recall behaves
similar for the three best approaches (FM, SVD and RF). We lead this behavior back to
the way recall is computed. For each algorithm, the tracks are ordered by the predicted
rating 7 and hence, by the likelihood of being relevant to a given user in a given context.
Secondly, there is a natural upper bound of the recall dependent on the number of
recommendations (ﬁ) As we sort recommendations by the predicted rating 7 evaluate
the top-n tracks, the order of tracks is essential. The better an algorithm performs, the
more relevant items with # = r = 1 are contained in the top-n recommendations. This
ultimately results in a higher number of RIT, as we compare the top-n recommendations
to the actual rating value r. This is why the top-algorithms approach a recall of n/50.
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Bollen et al. [57] addressed the problem of choice overload and state that user satisfaction
is highest when presenting the user with top-5 to top-20 items—mnaturally assuming that
the recommendation list contains a sufficient number of relevant items for the user. This
is why we state the results for a small number of recommendations n in Table 4.4. Please
note that we only list the top-3 algorithms here (FM, SVD and RF).

Recommender F1@Q1 F1@Q5 F;@Ql10 F1@20 F;@50

FM 093 094 0.94 0.94 0.95
SVD 0.73  0.80 0.80 0.80 0.80
RF 0.69  0.79 0.79 0.79 0.80

Table 4.4.: Fi-Measure for different n.

The results in Table 4.4 show that for maximizing the user satisfaction according to Bollen
et al. [57], our proposed FM-based approach clearly outperforms RF-based approaches
(where we model the context explicitly) as well as SVD-based approaches (where we
model the context-track associations implicitly via latent features). The FM model in
Equation 4.2 depicts that the FM models the context explicitly as part of the variable’s
main effects: " ; w;z; and additionally similar to the SVD approach implicitly in the
pair-wise interactions: » ", Z;n:z 41 i, U5xizj. Underpinned by an empirical evaluation
we argue that a hybrid approach combining regression with two-way interaction effects,
where the weights of these effects are estimated via matrix factorization for classification
(as provided by a factorization machine) is the best approach for context-aware music
recommendation in a setting similar to the one presented in this work.

Summing up, in this work we show how contextual clusters can be leveraged for context-
aware music recommendations. We find that contextual clusters can be leveraged for
music recommendations without the drawbacks of the pre-filtering approach either by
using a classifier approach or by incorporating latent features. Particularly, we find that
by using Factorization Machines, the best results regarding the accuracy of recommen-
dations can be obtained. Possible use cases for such recommender systems are (i) the
generation of track suggestions during the playlist generation phase of a user and (ii)
“contextual browsing” which helps users discovering music they like. For the first use
case, the recommender system can recommend tracks that are likely to be interesting to
the user that can be added to the currently curated playlist. Thus, the recommender
system presents tracks to the user, which similar users added to contextually similar
playlists. The second use case, the “contextual browsing”, is based on the finding of
Cunningham et al. [109] that people browse music collections to discover tracks they like
to listen to during different activities or situations. After a user selects a certain context
(or the context is automatically inferred), our recommender system can provide lists of
interesting tracks for this specified context. This use case is similar to the classical top-n
recommendation task we evaluated in Section 4.4.
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4.6. Conclusion

In this work, we propose a novel approach for incorporating contextual clusters extracted
from the names of user playlists for the computation of context-aware track recommen-
dations. Particularly, we present a recommendation approach based on Factorization
Machines. We evaluate the prediction accuracy of different recommendation approaches
based on a dataset of 15,000 users. Our k-fold cross-validations show that contextual
clusters can indeed contribute substantially to recommendation accuracy by relying on
either a classifier-based approach or approaches facilitating latent features. Particularly,
the obtained results show that our proposed factorization machined-based recommender
system is able to outperform the baseline approaches substantially. We consider these
findings highly promising. Hence, in future work, we aim to evaluate different FM-
models and configurations. Particularly, we are also interested in the use of higher order
factorization machines [52].
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Abstract

In the last decade, music consumption has changed dramatically as humans have increas-
ingly started to use music streaming platforms. While such platforms provide access to
millions of songs, the sheer volume of choices available renders it hard for users to find
songs they like. Consequently, the task of finding music the user likes is often mitigated
by music recommender systems, which aim to provide recommendations that match the
user’s current context. Particularly in the field of music recommendation, adapting rec-
ommendations to the user’s current context is critical as, throughout the day, users
listen to different music in numerous different contexts and situations. Therefore, we
propose a multi-context-aware user model and track recommender system that jointly
exploit information about the current situation and musical preferences of users. Our
proposed system clusters users based on their situational context features and similarly,
clusters music tracks based on their content features. By conducting a series of offline
experiments, we show that by relying on Factorization Machines for the computation
of recommendations, the proposed multi-context-aware user model successfully leverages
interaction effects between user listening histories, situational, and track content infor-
mation, substantially outperforming a set of baseline recommender systems.
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5. Multi-Context-Aware User Models

5.1. Introduction

Over the last decade, people have increasingly started to use music streaming platforms
providing millions of tracks [276]. Streaming platforms heavily rely on recommender
systems to help users navigate through the provided collections and discover music they
like. However, the extent to which a user enjoys and likes a recommended song heavily
depends on the user’s current context. Previous research has shown that information
about the context of a user (e.g., time, location, occasion, or emotional state) is vital
for providing suitable personalized music recommendations [241, 275| as people listen
to different music during different activities [228]. Also, Cunningham et al. [109] have
shown that users create playlists that are specifically intended for certain contexts or
activities.

Extracting contextual information for a music recommendation scenario, however, is a
complex task. To this end, in previous work we proposed an approach for clustering
contextually similar playlists by extracting contextual information from the names of
playlists, ultimately allowing to find playlists that users created for similar purposes and
situations [359, 361]. We proposed to leverage these situational clusters as an additional
feature for a Factorization Machine-based recommender system. Furthermore, we per-
formed an analysis of the acoustic features (e.g., tempo or danceability) of the tracks
contained in individual playlists and found that there are five different groups, so-called
archetypes, of playlists, described by their audio characteristics [362]. However, what is
still missing, is linking information about the situational context of a user with acoustic
feature-based playlist archetypes that represent different types of music that users listen
to. In this work, we are particularly interested in how contextual and audio characteris-
tics may jointly be leveraged for track recommendations'. Hence, we present a novel user
model combining situational and acoustic context information and refer to this model as
multi-context user model. We propose to make use of Factorization Machines (FM) [371]
as these allow for exploiting latent features and interactions between input variables.
This allows us to exploit interaction effects between contextual clusters extracted from
the names of playlists and acoustic clusters based on audio characteristics. In several
experiments, we show that a recommender system leveraging this proposed model sub-
stantially outperforms context-agnostic baselines and, more importantly, a context-aware
recommender system that relies on either context- or acoustic feature-based clusters in-
dividually.

The main contribution of this work is threefold: firstly, we leverage two types of con-
textual information for the computation of a multi-context-aware user model that allows
capturing a user’s preference towards certain archetypes of music (acoustic context) as
well as the contexts in which users listen to certain tracks (situational context). Secondly,
by utilizing Factorization Machines, we exploit interaction effects between the input vari-
ables (user listening history, acoustic feature-based playlist archetypes, and situational

!Please note that this manuscript is an extended version of [356], which was presented at the 2018
International Conference on Content-Based Multimedia Indexing (CBMI2018).
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context). FMs hence allow us to model and exploit the influence of a certain context
on the choice of tracks for a given user. Thirdly, we also investigate higher-order Fac-
torization Machines that aim to leverage higher-order interactions of the input of the
Factorization Machine.

The remainder of this paper is structured as follows. In Section 2, we discuss related work.
In Section 5.3, we formulate the problem underlying our work. Section 5.4 presents the
dataset utilized and in Section 5.5, we present the proposed multi-context user model and
recommendation approach. Subsequently, we describe the experimental setup underlying
our evaluation in Section 5.6 and present and discuss the obtained results in Section 5.7.
Finally, we wrap up our work in Section 5.8.

5.2. Related Work

Related literature can be categorized into recommendation approaches based on matrix-
factorization, context-aware recommender systems, and Factorization Machines. In the
following, we elaborate on these categories.

User-based collaborative filtering has been shown to work well in the field of music rec-
ommender systems [361, 422, 507|. User-based CF relies on the user-item matrix, which
holds ratings of users for items (so-called interactions). This matrix is used to group
users based on their rating behavior and hence, to find similar users. Based on such
nearest neighbors, items for a given user are recommended by choosing the items these
nearest neighbors rated favorably and that are new to the user, assuming that similar
users will rate items similarly. CF-based approaches utilizing matrix factorization (MF)
techniques have been shown to yield better recommendation accuracy than traditional
neighborhood-based CF approaches (e.g., [260]). MF approaches are also known as la-
tent factor models, as factorizing the user-item matrix yields a latent representation of
user-item interactions on a more abstract level (e.g., by applying Singular Value Decom-
position (SVD) [260]). Several extensions to MF have been shown to work well (e.g., for
implicit feedback data [199, 372] or for context-aware recommendations [34, 258]).

However, many of the current collaborative filtering-based track recommendation or con-
tinuation approaches are not able to cope with so-called “out-of-set” tracks (i.e., tracks
that do not appear in the training data) [469]. As a solution, hybrid systems com-
bining collaborative filtering and content-based approaches have been proposed. Vall
et al. [469] proposed to combine collaborative filtering and rich content descriptors for
music tracks into a feature-combination hybrid in a playlist continuation scenario. Fur-
thermore, McFee and Lanckriet [307] proposed to combine collaborative filtering and
content information such as e.g., low-level acoustic features, lyrics, or social tags in a
hypergraph, modeling users by random walks on this graph. More recently, van den
Oord [470] proposed a Deep Learning-based model for this task, utilizing Convolutional
Neural Networks to integrate matrix factorization and latent factors extracted from the
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audio signal of songs. Furthermore, hybrid systems in this regard have also been realized
by traditional hybridization strategies where the results of a CF-based and a content-
based recommender system are combined by weighting the results [210] or by re-ranking
strategies [180].

Generally, context can be considered as any additional information improving recommen-
dation accuracy and it is widely agreed upon the fact that the user’s context improves
personalized recommendations [10]. In the field of music recommender systems, users
often seek music that suits their current context (i.e., occasion, event, or emotional
states) [241, 275]. Kaminskas and Ricci [232] distinguish different kinds of contexts:
environment-related context (location, time, weather), user-related context (activity, de-
mographic information, emotional state of the user), and multimedia context (text or
pictures the user is currently reading or looking at). Examples for contextual infor-
mation that is leveraged for music recommendations are emotion and mood (e.g., [33,
178, 505]), the user’s location (e.g., [96, 234]), or recommending music matching doc-
uments on the web a user reads at the moment [71]. Adomavicius and Tuzhilin [10]
classify approaches modeling the user’s context into contextual pre-filtering, contextual
post-filtering, and contextual modeling approaches. The former two approaches apply
non-contextual models to recommendation problems (with an additional initial or final
filtering step), whereas contextual modeling leverages contextual information directly in
the model, as the approach presented in this work does. In previous work [359], we showed
that FM-based contextual modeling is able to outperform pre-filtering approaches.

Factorization Machines can be seen as an enhancement of CF [371]. FMs combine the
advantages of support vector machines (SVM) and factorization models. Factorization
enables the FM to model all interactions between variables in linear time [371], where the
model variables can be metric, nominal or ordinal. Hence, different types of context can
be integrated as nominal variables (e.g., weekdays or user groups). Recently, training
algorithms for higher-order Factorization Machines (HOFM) have been proposed [52,
317] and shown to be useful for link prediction [52] or recommendations based on implicit
feedback [486]. Inspired by the work of Rendle and Schmidt-Thieme [374], Field-aware
FMs (FFM) perform a pairwise factorizing of the features, and thus, the factorization
step is performed in separate latent spaces (fields). These have been applied for e.g.,
click-through rate (CTR) predictions [224]. More relevant for this work, FFMs have
also been applied for music recommendation [87], where audio descriptors and mood
information serve as input for the task of recommending music for a given text that
the user currently writes. However, FFMs suffer from a quadratic complexity with the
number of fields.

In this work, we present a multi-context-aware user model and recommendation approach.
We utilize SVD to represent the user’s situational context in a latent feature space and
also model the user’s general preference towards types of music. We rely on FMs to
exploit interaction effects of different types of user context in a rating prediction and
top-n recommendation scenario. To the best of our knowledge, this is the first music
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recommender system leveraging pre-computed nominal contextual variables in an FM-
based recommender system, where interaction effects allow us to model which user listens
to which type of music in which situation.

5.3. Problem Formulation

In the following, we formally define the context-aware track recommendation problem
addressed in this paper. The basic input for such a context-aware track recommender
system is a user-item matrix R, which holds prior user ratings for items (so-called inter-
actions). It consists of m rows (corresponding to the number of users) and n columns
(corresponding to the number of tracks). The elements r;; of the matrix correspond to
the rating a user ¢ has assigned to track j. Based on this matrix, the track recommen-
dation problem can be formulated as a rating prediction task as stated in Equation 5.1.
The utility function fgr computes predicted ratings 7;; for <user,track>-pairs that do
not feature a rating (yet). In classical CF models, fgr is learned from prior user-track
interactions.

fr = User x Track — Rating (5.1)

fr can be learned by matrix factorization techniques such as SVD [262] as depicted in
Equation 5.2, where U € R™*™ and V € R™™ are orthogonal factor matrices that
embed users and tracks onto a lower-dimensional space of latent features. ¥ is a m X n
diagonal matrix of singular values, estimating the impacts of the latent features on a
rating 7.

R=UxVT (5.2)

Using this representation, a single rating 7,; can be estimated using the dot product of
the feature vectors of the user u; and the item vj: 7y; = ; - v;.

Prior research has shown that people listen to different music during different activi-
ties [228] and people create playlists that are intended for certain activities [109]. Hence,
depending on different user contexts, different tracks need to be recommended. This
problem can be formulated as depicted in Equation 5.3, where fog is a utility function
assigning predicted ratings 7;; to user u for track i given user contexts ¢ [10].

fcr = User x T'rack x Contexts — Rating (5.3)

Hence, the problem we study is the computation of track recommendations that match
the current context of a user given his/her listening history including the contexts in
which those tracks have been listed to.

5.4. Dataset

For our approach and the experiments conducted (cf. Sections 5.5 and 5.6), we require
a dataset holding (i) listening histories of users, (ii) information about the situation in

47



5. Multi-Context-Aware User Models

which those songs were listened to, and (iii) acoustic characteristics of these songs. Hence,
we propose to leverage a publicly available dataset containing Spotify playlists [362]. We
enrich this dataset with situational context information and audio characteristics of the
tracks. The dataset contains the names of playlists which we will utilize to extract
situational context information from (cf. Section 5.5). As for the audio characteristics,
we gather and add content-based audio features for each track by querying the Spotify
API?. These high-level features are well established in the MIR community and are widely
used as a compact form for describing songs for modeling audio characteristics of tracks in
an abundance of previous works in the field of music information retrieval (e.g., [21, 209,
314, 318, 359, 362, 508]). The employed content features are extracted and aggregated
from the audio signal and comprise:

1. Danceability describes how suitable a track is for dancing and is based “on a com-
bination of musical elements including tempo, rhythm stability, beat strength, and
overall regularity.”

2. Energy measures the perceived intensity and activity of a track. This feature is
based on the dynamic range, perceived loudness, timbre, onset rate, and general
entropy of a track.

3. Speechiness detects the presence of spoken words in a track. High speechiness
values indicate a high degree of spoken words (e.g., talk shows or audiobooks),
whereas medium to high values indicate e.g., rap music.

4. Acousticness measures the probability that the given track is acoustic.

5. Instrumentalness measures the probability that a track is not vocal (i.e., instru-
mental).

6. Tempo quantifies the pace of the track in beats per minute.

7. Valence measures the “musical positiveness” conveyed by a track (i.e., cheerful and
euphoric tracks reach high valence values).

8. Liveness captures the probability that the track was performed live (i.e., whether
an audience is present in the recording).

2A detailed description of these features and the API can be found at https://developer.spotify.
com/web-api/get-several-audio-features/.
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For more detailed analyses on the acoustic features of user playlists, genre distributions
among clusters or playlists, we refer the interested reader to the original papers describing
the dataset [360, 362]. Furthermore, we provide an interactive playlist explorer tool® that
allows exploring the dataset and its acoustic characteristics in detail.

5.5. Multi-Context-Aware User Model and Recommender
System

The main idea of our approach is to compute recommendations based on the listening
histories of users and contextual information regarding audio content and situational
features. Particularly, we model and exploit pairwise interaction effects between these
different contexts, between users and contexts and between tracks and contexts.

An overview of the proposed framework is given in Figure 5.1, where the steps taken
to extract contextual information that is leveraged in the recommendation computation
are outlined. As input for the proposed approach, we require a dataset of playlists (i.e.,
sets of tracks®) assembled by users as presented in Section 5.4. Based on this dataset
(shown in Figure 5.1 as “Spotify Playlists Dataset”), we compute two types of contex-
tual information for the computation of multi-context-aware track recommendations: (i)
playlist archetypes (clusters) and (ii) situational clusters. For playlist archetypes (“Acous-
tic Cluster Component” in Figure 5.1), the input comprises the track id and the acoustic
features for each track as provided by the Spotify API (cf. Section 5.4). This component
computes the assignment of each track to an acoustic cluster. We describe this proce-
dure in detail in Section 5.5.1. For computing situational clusters, the input comprises
the track id and the names of the playlists the track is contained in. This component
(“Situational Cluster Component” in Figure 5.1) computes the assignment of each track
to a situational cluster. We detail this procedure in Section 5.5.2.

The extracted context information allows modeling user preferences for tracks contained
in certain playlist archetypes in a given situation. We refer to the clusters mined from
acoustic features as acoustic feature clusters (AC) and to the clusters mined from playlist
names as situational clusters (SC). To finally incorporate this information (user, track,
AC, and SC assignments) as input into a context-aware recommender system tackling the
problem as stated in Section 5.3, we propose to utilize Factorization Machines (FM) [371]
in a recommendation component (“Recommendation Component” in Figure 5.1). This
allows capturing user preference towards a certain archetype of music in a certain situa-
tional context and to exploit the interaction effects between these two notions of context.
this procedure results in a list of tracks sorted by the predicted relevance score for the
given user in a given situation. We describe the recommendation computation in more
detail in Section 5.5.3.

*http://dbis-pla.uibk.ac.at/
4In contrast to e.g., [150], we consider a playlist as an unordered set of tracks.
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Figure 5.1.: Proposed framework for computing multi-context-aware recommendations.
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5.5.1. Playlist Archetypes

The proposed approach relies on clusters of playlists (archetypes) that share similar
acoustic features (e.g., the tempo of the tracks contained). The major steps of this
computation are also depicted in Figure 5.1. In a first step, we aggregate the eight
acoustic features obtained via the Spotify API (cf. Section 5.4) of each playlist using the
arithmetic mean. To ensure that the arithmetic mean is indeed representative, we analyze
the dispersion of the tracks forming a playlist by comparing the mean and mean absolute
deviation (MAD) [282] for each feature for each playlist. Here, we argue that the MAD
is a robust measure with respect to outliers. With this analysis, we find that except for
loudness, the variance of each of the acoustic characteristics of the tracks inside a playlist
is low and the MAD is rarely higher than the mean. This allows us to conclude that
aggregating the characteristics of the individual tracks to playlist characteristics using the
mean is representative. For loudness, the variance among the tracks of a playlist is too
high. In 99.99% of all cases, the MAD is higher than the mean. Therefore, we drop the
loudness characteristic for the conducted playlist analyses and refer to [362] for further
analyses of the clusters. This aggregation step provides us with a lower-dimensional m xn
matrix AFM (acoustic feature matrix), where each row represents a playlist and each
column represents one of the proposed acoustic features. To find archetypes of music a
user listens to, we apply factorization to the centered matrix AF'M (all columns have a
mean value of 0 and a standard deviation of 1) as this allows us to conduct a Principal
Component Analysis (PCA) [349] via SVD [223].

The principal components (PCs) obtained by the conducted PCA allow explaining differ-
ences in playlists and, more importantly, estimate the number of acoustic clusters (ACs)
to be obtained by the explained variance of each PC (squared singular values 822 (diag-
onal of ¥)). For k = 5 clusters, the accumulated variance of the principal components
is 85.64 and hence exceeds the 80% threshold. Thus, we set the number of acoustic
feature clusters to be computed to k = 5. We compute the 5 clusters by applying k-
means on the dimension-reduced matrix AF M. The clustering assigns each playlist and
hence, implicitly each track, to one of five playlist archetypes that allow capturing a
user’s preferences towards certain types of music. We depict the result of this approach
in Figure 5.2, where each playlist is represented by an integer that represents the cluster
assignment. The clusters are marked by individual colors and are annotated with the
respective acoustic features. From the conducted PCA, we observe that playlists that are
highly influenced by instrumental and acoustic features are separated from the remaining
playlists by the first PC (PC1). Furthermore, PC1 and PC2 separate energetic playlists
with high tempo from the remaining playlists. Finally, we are also able to separate
playlists with high valence and danceability characteristics by PC1 and PC2. PC3, not
visible in Figure 5.2, separates playlists with high speechiness values from other playlists.
The clusters (archetypes) obtained serve as one notion of context to be used for the com-
putation of multi-context-aware track recommendations. We refer to our previous work
in [362] for further details on this approach and analyses of the resulting clusters.
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Figure 5.2.: Latent representation of playlist clusters.

5.5.2. Situational Clusters

Besides capturing musical preferences, we also aim to contextualize playlists by extracting
situational context from the names of playlists. The underlying assumption here is that
the names of playlists provide information about the situational context in which the
playlist’s tracks are listened to (e.g., “Summer Fun”, “Workout Mix”, or “Christmas”).
Along the lines of [359, 361], we mine for activities and other descriptors (seasons, events,
etc.) in the names of playlists.

As depicted in Figure 5.1, we firstly lemmatize all terms contained in playlist names us-
ing WordNet [319]|. Next, we remove stop words and non-contextual terms (e.g., genre,
artist, and track names) as these do not provide any contextual information. Further-
more, we utilize AlchemyAPI’s entity recognition services® to remove playlist names that
do not provide any contextual information. These are mostly playlist names that consist
of artist names, track names, or genre descriptions. This results in a set of cleaned lem-
mata per playlist. However, those playlist names are rather short and heterogeneous. To
create a meaningful distance matrix suitable for clustering playlists based on their names

5Please note that AlchemyAPI is now part of IBM Watson’s Natural Language Understanding API:
https://cloud.ibm.com/apidocs/natural-language-understanding.
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is challenging. Therefore, we again use WordNet to enrich the lemmata of each playlist
with semantically matching synonyms and hypernyms to create a more expressive term
frequency-inverse document frequency (tf-idf) matrix. We derive this matrix by using
a bag-of-words describing each playlist based on the derived lemmas, synonyms, and
hypernyms. For the resulting bags of lemmata describing each playlist, we compute the
term frequency-inverse document frequency (tf-idf) for each bag-of-lemmata representing
a playlist name. Playlist similarities can now be computed by the pairwise cosine simi-
larity of the resulting vectors. Based on these similarities, we span a distance matrix and
find contextually similar playlists by applying k-means clustering. Along the lines of [361]
(cf. Section 5.6), we empirically determine the number of clusters and set these to k = 23.
This provides us with a set of 23 situational clusters capturing in which context a user
listened to certain tracks. For instance, one of the clusters comprises Christmas songs,
whereas another cluster comprises playlists and tracks related to a “summer” theme (e.g.,
containing playlist names such as “my summer playlist”, “summer 2015 tracks”, “finally
summer” and “hot outside”). We refer to our previous work [359, 361| for further details
on the computation of situational clusters and their usage in recommendation scenarios.
In the next section, we present how we incorporate the gained contextual information in
the computation of recommendations.

5.5.3. Recommendation Computation

The context extraction steps described in Sections 5.5.1 and 5.5.2 provide us with in-
formation about (i) a user’s preference for playlist archetypes, and (ii) the situational
context in which a user listens to certain tracks. This information is extracted in the form
of user-cluster assignments. We now combine these clusters and the listening history of
users in a joint user model that informs the track recommender system.

In this work, we propose to use FMs [371] for the computation of recommendations, i.e.,
to compute a predicted rating 7 for a given user ¢ and a given track j, incorporating
situational clusters (SCs) and acoustic feature-based clusters (ACs). We process the
input for the rating prediction task as follows: first, <user,track>-pairs are enriched
by the corresponding contextual cluster assignments, now forming <user,track,AC,SC>-
tuples (as can also be seen in Figure 5.1). By adding a fifth column—rating r—to each
entry in the dataset, we derive the input matrix R for our rating prediction problem to
be solved (holding user, track, AC, SC, and rating columns).

Our dataset does not contain any implicit feedback by users (i.e., play counts, skipping
behavior, or session duration). Therefore, we cannot estimate any preference towards an
item as e.g., proposed by [199]. However, we assume that adding a track to a playlist
signals a user’s preference for the track. As the recommendation task is transformed
into a rating prediction task, we require the dataset to also include negative examples.
Therefore, for each user, we randomly add tracks the user did not interact with in a
given situation (i.e., tracks t; with 7;; = 0 for the given user u;) to the dataset until
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the listening history of each user in both the training and test sets are filled with 50%
relevant and 50% non-relevant items for the user. We chose to oversample the positive
class to avoid class imbalance and hence, a bias towards the negative class (the number
of tracks not listened to is much larger than the number of tracks listened to for all users
as naturally, users only listen to a small fraction of the songs available). Hence, for each
unique <user,track,AC,SC>-tuple, the rating r;;s. is defined as stated in Equation 5.4.

1 if u; listened to t; in SCs and AC,
Tijsc_{ if u; listened to t; in an (5.4)

0 otherwise

Based on this dataset, for computing the predicted rating 7, we model the influence
of a user i, a track j, the situational cluster s, and the content-based cluster ¢ on 7
in a FM. Relying on FMs, we are able to model all pairwise interactions, allowing to
model the influence of the simultaneous occurrence of two variable values, i.e., of a track
7 and the contexts s and ¢ or a user ¢ and the contexts s and c. Furthermore, we
model the interaction of the contexts ¢ and s which can be interpreted as the influence
of the current activity of a user (SC) on the playlist archetype (AC) and vice versa.
This is shown in Equation 5.5: the FM computes 7 by estimating a global bias (wy),
estimating the influence of the user, track as well as the contexts (D1, w;z;) along
with estimating the quadratic interaction effects of those (3°7_; (i, vj)ziz;). However,
instead of learning all weights w; ; for the interaction effects, as traditional approaches
such as logistic regression with quadratic interaction effects do, FMs rely on factorization
to model the interaction as the inner product (vj,v;) of low-dimensional vectors [371].

n n n

TRM = Wy + Zwixi + Z Z (@,v})xim’j (55)
i=1 i=1 j=i+1

The weights of the latter interaction effects are computed by applying matrix factorization

during the FM optimization using a Markov Chain Monte Carlo (MCMC) solver as

proposed by [152, 371].

Recently, higher-order Factorization Machines (HOFM) have been introduced, that allow
for incorporating higher-order interaction effects |52, 317]. Aiming at further advancing
the presented approach, we propose to also exploit 3-way interaction effects. A HOFM
model is depicted in Equation 5.6, where a further factor capturing 3-way interactions
is added (in comparison to 2-way Factorization Machines as depicted in Equation 5.5).
Again, we rely on the Markov Chain Monte Carlo (MCMC) learning method.
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n m m
FHOFM = Wo + E w;T; + E E (03, vj) iz i+
=1 =1 j=itl

m m m
+§ E E (03,05, Ul) @iz X

i=1 j=i+11=j+1

5.6. Experimental Setup

In the following section, we present the experimental setup used to assess the performance
of the proposed user model and recommendation approach. The proposed approach and
the respective baselines were implemented in R, utilizing the libFMexe® wrapper for
the original libFM implementation for FMs and the FactoRizationMachines” package
for Higher-Order Factorization Machines. All experiments are based on the same input
data as described in the following, before we present the methodology applied for the
evaluation and the approaches evaluated.

5.6.1. Input Data for FM

We take the following steps to create the input data for the FM. In a first step, we ap-
ply the proposed dimension reduction and clustering methods on the dataset described
in Section 5.4 to obtain the proposed acoustic feature (AC) and situational clusters
(SC). To also allow looking into the impact of the clustering step for acoustic features,
we evaluate a model that uses the individual acoustic features of tracks (AF). There-
fore, we also add these features to the dataset. This results in a dataset containing
<user,track,SC,AC,AF rating>-tuples.

In the next step, we assign each track a rating value r. The rating indicates whether
a certain user listened to a certain track in a certain situational cluster (r = 1) or not
(r = 0) based on the underlying dataset as described in the previous Section. Please
note that a user might listen to the same song in different situations (clusters), whereas
a track always belongs to the same acoustic feature-based cluster. The final dataset used
for the presented evaluation contains 956 unique users who listened to 485,304 unique
tracks (we removed tracks we could not obtain acoustic features for and playlists for
which we could not extract situational information from the playlist name). On average,
a user in the dataset listens to 770.19 tracks (SD=2,168.62, Median=264.50).

A fragment of the resulting dataset is shown in Table 5.1. This excerpt shows that
user 872 has listened to track 250246 (belonging to acoustic feature-based cluster 4) in

https://github.com/andland/1libFMexe
"https://github.com/cran/FactoRizationMachines
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User Track SC AC AF; ... AF; Rating
872 309275 0 3 024 0.16 1
872 309275 1 3 0.24 0.16 0
872 250246 0 4 0.10 0.12 1
911 250246 2 4 0.10 0.12 1

Table 5.1.: Dataset fragment.

situational context cluster 0, whereas user 911 has listened to track 250246 in SC 2.
This dataset forms the foundation for our experiments, which are presented in the next
section.

5.6.2. Evaluation Methodology

To assess the performance of the proposed user models in a FM-based recommendation
scenario, we employ the following evaluation method. For each user in the dataset, we
perform a 5-fold cross-evaluation with random sampling on the user’s tracks (i.e., for
each fold, we utilize 80% of the user’s tracks for training and the remaining 20% as test
set such that each track is used once in the test set and four times as training data). We
compute a predicted rating 7 for each track in the user’s test set and hence, compute
the probability whether a certain user listened to a certain track in a certain situational
cluster. The evaluation metrics are computed for each fold separately and subsequently,
averaged over all folds and in a final step, those metrics are averaged over all users. Due
to the random selection of data for the folds, we allow the folds to contain an arbitrary
number of relevant (r = 1) and irrelevant items (r = 0). However, as the distribution of
the dataset we sample from has a 1:1 ratio between relevant and irrelevant tracks, the
distribution within folds yields a similar distribution.

We aim to assess the performance of different recommendation models in both a top-n
recommendation task as well as a rating prediction task. For the top-n recommenda-
tion task, we rank the items based on the predicted rating 7. We consider all tracks
with a predicted rating below 0.5 (# < 0.5) as irrelevant and do not consider these for
recommendation. This proxy for the perceived usefulness of a user towards an item is
finally used to rank the remaining tracks and cut off @Qn to retrieve a list of top-n track
recommendations. Subsequently, we compute the precision, recall, and F; measures. We
also evaluate the performance of a rating prediction task for the different user models.
Therefore, we compute the root mean squared error (RMSE) for the predicted ratings 7
and the actual ratings r in the test set.
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5.6.3. Evaluated User Models and Recommendation Approaches

To assess the effects of incorporating different contextual information encoded as clusters
into a recommender system, we propose to evaluate and compare a theoretical random
baseline, three baseline approaches, and a number of variations of the proposed multi-
context-aware user model, which we detail in the following.

The theoretic random baseline (TR) guesses whether a track is relevant or irrelevant
for a user. To outperform this random baseline, the values for RMSE have to be lower
than 0.5. The probability of correctly guessing the correct rating in the sample space
Q' ={0,1} is P(0) = P(1) = 0.5 for each track. For top-n recommendations, we assume
that the probability of correctly guessing the rating of a track is P = 0.5. Hence, for
the precision measure, the random baseline is 0.5. For the recall measure, the baseline
is dependent on the number of recommendations n along with the number of relevant
items and can be stated as rec = m assuming that every other guess (%) is
a hit.

Furthermore, we employ the following three baseline methods: (i) a user- and content-
agnostic approach that recommends the most popular tracks (MP) of each situational
cluster; (ii) a collaborative-filtering baseline that incorporates the users’ listening his-
tories as input to the FM (CF); (iii) a CF model extended with the acoustic features
of the tracks (AF), as this is known to work well [306] (again computed via the FM).
Here, we use the individual acoustic features of each track and do not rely on acoustic
feature clusters in this model. We consider this model a more advanced but never-
theless context-agnostic baseline. Please note that the goal of the work at hand is in
investigating user models for multi-context-aware music recommendation scenarios and
therefore, we aim to compare the different proposed user models and do not focus on
the recommendation part. We argue that in previous work, we have already shown that
utilizing Factorization Machines for context-aware recommendations contributes to rec-
ommendation performance [359], and hence, we rely on Factorization Machines and do
not experiment with further recommendation approaches. However, the proposed CF
baseline is a matrix factorization approach and hence, employs a different approach for
the computation of recommendations.

Table 5.2 gives an overview of the evaluated models (combining a user model and recom-
mendation approach) and the respective input data. We derive a set of extended models
utilizing the situational clusters mined from the playlist names and playlist context de-
rived from acoustic feature clusters as follows. Firstly, we evaluate a context-aware model
extending the CF baseline by incorporating the situational clusters mined from playlist
names (SC'). Analogously, we extend the CF baseline by incorporating the playlist con-
text (AC), the acoustic features (AF), and a combination of both (AF+AC). Finally,
we evaluate a multi-context-aware model that combines both clusters (AC+SC) and a
model incorporating the situational clusters mined from the playlist names combined
with the eight individual acoustic features, the AF+SC model.
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Model CF AF AC SC

TR (theoretic random baseline)

MP (most popular baseline)

CF (collaborative filtering baseline)
AF (CF + acoustic features baseline)

SC (CF + situational clusters)

AC (CF + acoustic clusters)

AF+AC (CF + acoustic features + acoustic clusters)
AF+SC (CF + acoustic features + situational clusters)
AC+SC (CF + acoustic clusters + situational clusters)

v v

NN NN AN
Q\

v v

Table 5.2.: Overview of evaluated models (top: baseline approaches, bottom: variations
of the proposed multi-context approach).

To also analyze the impact of interaction effects on the recommendation performance,
we perform a final experiment based on the best performing user model detected in the
previous experiments. We aim to assess the impact of different orders of interaction
effects (no interaction effects, 2-way, and 3-way interactions) and also analyze the role of
the number of latent features used in the factorization step.

5.7. Results and Discussion

In the following we first discuss the results of the top-n recommendation task evaluation
(Section 5.7.1), followed by the results of the rating prediction task (Section 5.7.2).
Subsequently, we present the results of the evaluation of the impact of interaction effects
(Section 5.7.3).

5.7.1. Top-n Recommendation Task

In this evaluation, we aim to analyze the recommendation and ranking performance of
the proposed models.

In a first step, we evaluate a recommendation list containing all recommendations (i.e.,
n = R, the number of tracks in the test set for a given user). The results of this analysis
are depicted in Table 5.3. We observe a superior precision and Fj performance of our
proposed multi-context-aware AC+SC model jointly incorporating acoustic clusters (AC)
and situational clusters (SC). The highest precision is reached by the AC+SC model
(0.96), which outperforms the AF model (0.86) by 11.63%. Similarly, the AF+AC model
reaches a precision of 0.85. We observe that both models jointly incorporating situational
contexts and acoustic information (AC+SC and AF+SC) outperform all baselines, with
the MP baseline reaching a precision of 0.73. In terms of the Fj-measure, our proposed
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Approach Precision Recall ¥
AC+SC (CF + acoustic clusters + situational clusters) 0.96 0.81 0.88
AF+SC (CF + acoustic features + situational clusters) 0.80 0.78 0.79
AF (CF + acoustic features baseline) 0.86 0.68 0.76
AF+AC (CF + acoustic features + acoustic clusters) 0.85 0.65 0.74
AC (CF + acoustic clusters) 0.47 0.85 0.60
SC (CF + situational clusters) 0.46 0.83 0.59
CF (collaborative filtering baseline) 0.43 0.70 0.53

TR
MP

—~

theoretic random baseline) 0.50 0.50 0.50
most popular baseline) 0.73 0.01 0.01

—~

Table 5.3.: Top-R evaluation results (sorted by F, best results in bold).

AC+SC approach is 11.39% more accurate than a model exploiting acoustic features (no
clustering) along with situational clusters (AF+SC) and 18.92% more accurate than a
model relying solely on the individual acoustic features (AF). Furthermore, the AC+SC
model is 49.15% more accurate than a model solely exploiting situational clusters (SC).

The context-agnostic CF baseline is outperformed if contextual clusters are incorporated
into the model in isolation: in terms of Fj, a model solely exploiting acoustical clus-
ters (AC) is 13.21% more accurate than the CF baseline and a model solely leveraging
situational clusters (SC) outperforms the CF baseline by 11.32%. However, clusters in
isolation cannot outperform a context-agnostic model incorporating acoustical features.
Models that incorporate acoustical features constantly perform better than models with-
out. This is why we argue that a model combining classical CF with acoustical features
represents the user well, but integrating a user’s situational context allows to capture
the user’s preferences more efficiently in our scenario. In a later analysis (top-10 recom-
mendations) in this section, we find that acoustical features are especially suitable for
recommending tracks from the long tail. We suspect that a similar behavior causes the
good recall performance of the AC model. However, we argue that in a music recom-
mendation scenario, precision is more important to users than recall [46]. In comparison
to the context-agnostic CF baseline, which only considers each user’s listening history as
input, our results show that AC4+SC and AF+SC constantly outperform the CF baseline
substantially.

For the top-n recommendations evaluated in this experiment, in terms of the Fj-measure,
the AC+SC model on average performs 15.14% better across all n than the AF approach,
which is the best performing approach that does not leverage situational clusters.

Inspecting the baselines, we observe that all proposed models that combine different
contexts, as well as the AF model, outperform the CF and TR baselines in terms of
precision and Fj. In terms of recall, the CF baseline is outperformed by the AC+SC,
AF+SC, AC, and SC approaches. The MP baseline (recommending the most popular

99



5. Multi-Context-Aware User Models

ST Sao~=~. | Model

0o “"‘ . = = o CF + ac. clusters

) - - =s= = CF + ac. features + ac. clusters

o ) TR o< — = = CF +ac. clusters + sit. clusters
$

=" = 4= CF + ac. features

F1

|

I
1.

I

I

I

N

e ==« CF + ac. features + sit. clusters
.
08 ’ « = - CF baseline

Most popular baseline

CF + sit. clusters

1 5 10
Recommendations n

Figure 5.3.: F} for n = 1...10 recommendations.

items in the respective situational cluster) reaches reasonably good precision values.
We explain this behavior of the MP baseline by the fact that the natural cap of the
recall measure is rooted in the long-tailed distribution of the play counts, where popular
tracks with high play counts among several users are rare [23]. Hence, the set of “good”
recommendations of the MP approach is limited to this small amount of popular tracks,
naturally limiting its recall performance.

Generally, user satisfaction has been shown to be highest when presenting the user with
a short top-list of items naturally assuming that this recommendation list contains a
sufficient number of relevant items [57]. Therefore, we evaluate the top-n performance
of the proposed recommender system for a small number of n. Figure 5.3 depicts F}
for n = 1...10, where we observe that the AC+SC model with an average F;@Q10-score
of 0.93 outperforms all other approaches. Notably, it outperforms the AF+SC model
with an average F;@10-score of 0.89 by 3.70%. Moreover, models leveraging situational
clusters outperform all other models: the AC+SC model is the most accurate model,
followed by the AF-+SC model and the SC model. This is in contrast to the F}QR-
score results presented previously and a deeper analysis showed that situational clusters
increase the precision only for a limited number of recommendations n. Incorporating
SCs is beneficial for a small number of recommendations n but limits the discovery of
new items in the long tail and hence, limits the performance for a large number of n.
We believe that this is one of the reasons why the hybrid AC+SC and AF+SC models
outperform all other approaches in both evaluations.

We observe that models that incorporate acoustic features along with situational clusters
provide the best performance independently of the number of recommendations n. Our
experiments also show that for a small number of recommendations n (n < 10), incor-
porating situational substantially impacts the recommendation performance. Moreover,
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the AC model leveraging acoustic clusters performs better than the AF model that lever-
ages all acoustic features for small numbers of n. However, this does not hold for larger
n, where it is important to be able to recommend tracks from the long tail. This long
tail includes tracks with low play counts (i.e., non-mainstream, niche music). ACs group
users who enjoy listening to similar music, which is sufficient for small n and for users
with a rather narrow and less diverse music taste. In this context, we suspect that ACs
favor mainstream music over less common music. However, to recommend tracks from
the long tail, the system needs to accurately model the user’s preferences in more detail
by incorporating individual audio features (AF) of the tracks in the listening history of
the user. Our experiments show that additionally incorporating the situational context
(SC) improves the recall and Fj for both, short and long lists of recommendations and
precision can also be improved for short recommendation lists. Hence, we believe that the
findings based on the evaluation of the top-n recommendations show that context is vital
for improved recommendations, which is also in line with previous findings (e.g., [33,
34]). While the performance SC and AC in isolation indeed shows the importance of
situational context, we can also show that incorporating both clusters along with the
interaction effects is beneficial for the performance of the system. We analyze the impact
of interaction effects further in Section 5.7.3.

5.7.2. Rating Prediction Task

To get a deeper understanding of the recommendations computed by FMs in relation to
the individual models evaluated, we also evaluated a rating prediction task. The FM-
component in our recommender system computes a predicted rating 7, i.e., the probability
of a user listening to a certain track in a certain situational cluster. Hence, 7 can be seen
as a proxy for the perceived usefulness of a user towards an item and hence, can be
evaluated by measuring the error of this prediction. l.e., we evaluate this task by error
metrics computed between 7 and 7.

Approach RMSE
AC+SC (CF + acoustic clusters + situational clusters) 0.40
AF+SC (CF + acoustic features + situational clusters) 0.40

AF (CF + acoustic features baseline) 0.44
AF+AC (CF + acoustic features + acoustic clusters) 0.47
AC (CF + acoustic clusters) 0.57
MP (most poplar baseline) 0.71
SC (CF + situational clusters) 0.72
CF (collaborative filtering baseline) 0.75

Table 5.4.: Rating prediction evaluation results (sorted by RMSE, best results in bold).
Table 5.4 depicts the results of the rating prediction measures computed over the test

set in Table 5.4. Our results show that the AC+SC and the AF+SC models achieve the
lowest RMSE values, which also is in line with the results of the evaluation of the top-n
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recommendation task. Both models incorporating acoustic features and situational clus-
ters (AC+SC, AF+SC) outperform a model solely using the situational clusters (SC) by
44.44.% and a model solely using acoustic-feature clusters (AC) by 29.82%, respectively.
Along with the evaluation of the top-n recommendations in the prior experiment, these
findings strongly support our initial hypothesis that clusters and the interaction effects
between the input variables strongly impact the performance of context-aware track rec-
ommendations. To investigate the impact of interaction effects, we compare the proposed
FM to a FM that does not incorporate any interaction effects in a further evaluation in
Section 5.7.3. Furthermore, in line with our findings of the top-n evaluation, the AF
model is also able to capture user preferences well. Analogously to the previous evalua-
tion, we show that this is particularly the case for tracks in the long tail, consequently,
the AF model also performs well in the rating prediction evaluation.

Interestingly, the most popular (MP) approach outperforms the CF- as well as the SC-
model. However, this is, as the MP approach assigns the top-n most popular tracks with
a predicted rating of # = 1 and the remaining (unpopular) items with no rating, and
thus, we assume a predicted rating of # = 0. In contrast, the FM approaches estimate 7,
the probability of whether a given user has listened to a given track in a given situational
cluster. Ultimately, for non-relevant and correctly classified tracks in the test set, the
error is 0 for the most popular approach, whereas there naturally is an error for the other
approaches (although the track is correctly classified) as these estimate 7 in [0,1]. This
is, as all tracks with a predicted rating 7 < 0.5 are classified as irrelevant which yields
a true positive for the classification-based measures, but the rating prediction measures
indicate an error in the range between 0 and 0.5.

5.7.3. Impact of Interaction Effects

In a final set of experiments, we are interested in the extent to which the performance
of the utilized FM is dependent on the number of latent features used for modeling the
interaction effects in the FM and the impact of the order of interaction effects.

To estimate the impact of interaction effects on the recommendation quality, we compare
the performance of a FM that does not exploit any interaction effects and a FM that
leverages interaction effects based on the best user model detected (AC+SC). The results
of these experiments can be seen in Table 5.5. These results show that adding interaction
effects allows for a 17.41% higher Fj-score (0.88 vs. 0.75) and an increase in precision
of 28.13%, while the recall values are comparable. This is also reflected in the RMSE
of 0.41 for a model incorporating interaction effects and an RMSE of 0.67 for a model
not incorporating these (improvement of 38.81%). This again strengthens our hypothesis
that exploiting interaction effects is highly beneficial in such a scenario.

In a second experiment, we evaluate the performance of our 2-way FM dependent on the
number of latent features. A boxplot presenting the results of this evaluation can be seen
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Approach Precision Recall ¥
AC+SC (2-way interactions) 0.96 0.81 0.88
AC+SC (no interactions) 0.69 0.82 0.75

Table 5.5.: Impact of interaction effects: top-R evaluation, where the AC+SC model
incorporates CF + acoustic clusters + situational clusters.

in Figure 5.4. We find that the best performance in terms of the Fj-measure is reached
with k£ = 20 or £k = 5. However, the differences among all configurations regarding the
number of latent features are subtle. In fact, the difference is smaller than the standard
deviation and hence, not significant. Therefore, we argue as there are no differences in
performance and training the £ = 20 model took approximately four times longer than
the training of the kK = 5 model in our experiments, choosing k = 5 seems a reasonable

choice.
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Figure 5.4.: F1@QR for different numbers of latent features k.

In a final evaluation, we are interested in the performance of higher-order Factorization
Machines (HOFM) and hence, the impact of 3-way interaction effects in our scenario.
Based on the results of our previous experiments regarding the number of latent features
(and hence, the dimensionality of the factorization of interactions), we fixed k for the
second-order dimensions at k = 5. The results of our comparison between a FM with-
out any interaction effects (FMO), traditional FMs (FM), and HOFMs (HOFM) for the
AC+SC model are depicted in Figure 5.5. The results show that also for HOFM, AC+SC
is the model obtaining the best results. For HOFM, we observe a minor performance im-
provement of below 1% for both F; and RMSE. Please note that these experiments were
performed using the HOFM library (cf. Section 5.6) to conduct a fair comparison among
the three approaches (FMO0, FM, and HOFM), which also explains the slight difference to
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the results of the previous experiments (which were performed using the original libFM
library). However, as the standard deviation is larger than the mean, these differences
are not significant. Hence, as a HOFM has no significant advantage regarding its Fj
performance and the fact that HOFMs naturally are a more complex model and thus, re-
quire higher computational efforts, we argue that relying on traditional FMs is a feasible
and reasonable choice, which also is in line with previous findings [486].

5 10 20 30 40 5060 80 100
Recommendations n

Figure 5.5.: F; for FMO (no interactions), FM (2-way interactions) and HOFM (3-way
interactions) for the AC+SC model for n = 0...100 (x-axis log-scaled).

5.8. Conclusion and Future Work

In this paper, we presented a multi-context-aware user model that jointly exploits (i) sit-
uational context extracted from the names of playlists, and (ii) playlist archetypes that
share acoustic characteristics to model which kind of music is listened in certain situ-
ational contexts. Both the situational context and musical preferences are represented
as cluster assignments. For the computation of recommendations, we use Factorization
Machines which use the proposed user model as input to exploit interaction effects among
contexts. In extensive offline experiments, we show that (i) the integration of situational
context improves the precision of music recommender systems and that (ii) acoustic fea-
tures and thereby, a user’s musical taste, are particularly beneficial to retrieve tracks a
user likes from the long tail. Our experiments show that interaction effects between sit-
uational context and musical preferences (playlist archetypes, acoustic clusters) provide
the most accurate recommendations.

We believe that the use of Factorization Machines allows for easily extending our current

approach with further notions of context such as emotion [505] or culture [511]. Also,
the extraction of situational information from the names of playlists may also benefit
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from utilizing factorization models [102|. From an evaluation perspective, we also aim
to investigate beyond-accuracy metrics [230] in future work to look into how contextual
factors might affect aspects such as diversity of recommendation lists or novelty.
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Abstract

User models that capture the musical preferences of users are central for many tasks
in music information retrieval and music recommendation, yet, it has not been fully
explored and exploited. To this end, the musical preferences of users in the context of
music recommender systems have mostly been captured in collaborative filtering-based
approaches. Alternatively, users can be characterized by their average listening behavior
and hence, by the mean values of a set of content descriptors of tracks the users listened
to. However, a user may listen to highly different tracks and genres. Thus, computing
the average of all tracks does not capture the user’s listening behavior well. We argue
that each user may have many different preferences that depend on contextual aspects
(e.g., listening to classical music when working and hard rock when doing sports) and
that user models should account for these different sets of preferences. In this paper, we
provide a detailed analysis and evaluation of different user models that describe a user’s
musical preferences based on acoustic features of tracks the user has listened to. perform
an evaluation of the models’ capabilities to represent a user’s preferences well.


https://doi.org/10.5281/zenodo.1492515

6. Content-based User Models

6.1. Introduction

In the last decade, the amount of tracks available on streaming platforms has literally
exploded. Users are supported in exploring and wading through these music collections
by means of personalization—mostly by recommender systems that provide users with a
list of tracks they might like to listen to. Such personalization is central for the success
of streaming platforms as it eases the task of discovering new and enjoyable music for
users.

For music information retrieval (MIR) and particularly, for personalization tasks in this
context, modeling the musical preferences of users is naturally a central aspect. Yet, user
modeling for MIR and music recommender systems (MRS) has hardly been investigated
[55, 412, 413]. To this end, music recommender systems have mostly been realized
by means of collaborative filtering (CF) methods [261] or more advanced factorization
approaches [262], where recommendations are based on interactions between users and
items. Such systems are agnostic to content features as recommendations are computed
based on the similarity of users (or items) based on their co-occurrence in the listening
histories of all users. On the other hand, (the less adopted) content-based recommender
systems [299] compute recommendations based on the similarity of content descriptors of
tracks. Also, hybrid recommender systems combining CF- and content-based approaches
have been proposed [67].

In the field of MIR, tracks are traditionally characterized by content descriptors—these
range from detailed features such as MFCCs [297] to high-level content descriptors such
as acousticness, tempo or danceability (e.g., provided by the Spotify platform!). While
these features are widely used to characterize single tracks, for a user model that captures
the user’s preferences well, these features have to be aggregated across all tracks the user
has listened to. To this end, Pichl et al. [362] utilized content descriptors of tracks for rep-
resenting a user’s musical preference by computing the average acoustic features across
all tracks the user has listened to. They also find that users create different playlists
that feature different acoustic characteristics—implying that these playlists correspond
to different sets of preferences of a user (which may naturally be context-related) and
stress the need for more comprehensive user models to describe users’ musical prefer-
ences [362]. Similarly, Wang et al. [481] state that people prefer different music for
different daily activities. Along these lines, we argue that users may exhibit different
preferences depending on the context and e.g., listen to more energetic music when doing
sports or calming music when being at home [481]. These different preferences cannot
be sufficiently reflected in a model that averages the characteristics of all the tracks a
user listened to. In a probabilistic user model, Bogdanov et al. [55] characterize a user
in a semantic feature space derived from low-level content features by utilizing Gaussian
Mixture Models.

"https://developer.spotify.com/web-api/get-several-audio-features/
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In this paper, we build upon and extend these previous works by proposing different
user models to describe the musical preferences of users based on content descriptors of
tracks. We perform a large-scale evaluation of these models in a track recommendation
task based on 8 million listening events of 13,000 users. Our experiments show that
utilizing a user model based on a user’s specific preferences regarding different types of
music (modeled probabilistically by GMMs) complemented with a user’s general musical
preference achieves the best results. Our results show that in terms of recommendation
quality, the proposed models contribute to substantially improved recommendation per-
formance. We believe that our findings can contribute to improved user models for music
recommender systems and generally, MIR tasks.

The remainder of this paper is organized as follows. Section 2 discusses related work
and Section 3 presents the features utilized and the dataset underlying our experiments.
Section 4 presents the user models proposed. Section 5 details the experimental setup
and Section 6 presents the results of our study, which are discussed in Section 7. Section
8 concludes the paper and discusses future work.

6.2. Related Work

Generally, Schedl et al. [412, 413] note that the user and his/her preferences are often
not considered when it comes to MIR and MRS tasks. Particularly, the authors lay out
that user modeling for such tasks has hardly been explored and evaluated yet.

To this end, content descriptors have widely been used in MIR and MRS. For similarity
search, often a content-based similarity measure is used for matching queries and a mu-
sic database [97, 294, 429, 516|. In the context of music recommender systems, Yoshii
et al. [501] propose a hybrid recommender system that combines collaborative filtering
via user ratings and content-based features modeled via Gaussian Mixture Models over
MFCCs by utilizing a Bayesian network. Also, Liu [294] investigates different distance
metrics for content-based recommender systems. Recently, also deep learning-based hy-
brid MRS have also been proposed [482]. In regards to user modeling for MRS, Bogdanov
et al. compute a user’s musical preferences by a set of exemplary tracks that the user
enjoyed. They model the user’s preference in a latent semantic space based on a set
of diverse content features and propose a set of similarity-based recommender systems.
One system models a user by a Gaussian Mixture Model based on the proposed seman-
tic audio feature space. The authors evaluated these recommender systems in a user
experiment with twelve users. As for musical preferences of users, Pichl et al. found in
a large-scale study of Spotify users that music streaming users listen to different types
of music. Those types can be observed via k-means clustering of content descriptors
of tracks. They also found that users organize their music in playlists based on these
types and stress the importance of more comprehensive user models to describe users’
musical preferences [362]. Along these lines, we specifically investigate user models that
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are solely based on content descriptors. We propose six user models and compare these
in a large-scale offline study based on a recommendation task comprising 13,000 users
and 8 mio. listening events.

6.3. Dataset and Features

The main data source used in our experiments is the publicly available LEM-1b dataset [408],
which provides the full listening histories of 120,322 Last.fm users. For each listening
event (i.e., a certain user listening to a certain track), information about the track,
artist, album and user is available. Besides the information contained within the LFM-
1b dataset, we also require content features to describe tracks. Following the lines of,
e.g., 21, 314, 362], we propose to rely on the Spotify API? to gather the following content
descriptors for each track:

1. Danceability describes how suitable a track is for dancing and is based “on a com-
bination of musical elements including tempo, rhythm stability, beat strength, and
overall regularity.”

2. Energy measures the perceived intensity and activity of a track. This feature is
based on the dynamic range, perceived loudness, timbre, onset rate and general
entropy of a track.

3. Speechiness detects presence of spoken words. High speechiness values indicate a
high degree of spoken words (talk shows, audio book, etc.), whereas medium to
high values indicate e.g., rap music.

4. Acousticness measures the probability that the given track is acoustic.

5. Instrumentalness measures the probability that a track is not vocal (i.e., instru-
mental).

6. Tempo quantifies the pace of a track in beats per minute.

7. Valence measures the “musical positiveness” conveyed by a track (i.e., cheerful and
euphoric tracks reach high valence values).

8. Liveness captures the probability that the track was performed live (i.e., whether
an audience is present in the recording).

2A detailed description of these features and the API can be found at https://developer.spotify.
com/web-api/get-several-audio-features/.
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These features are high-level descriptors of the acoustic content of tracks. We argue that
they are nevertheless representative and hence, the obtained results should give a good
impression on the differences of the user models. We expect our findings to also hold for
more complex and lower-level content descriptors such as e.g., Mel-Frequency Cepstral

Coefficients (MFCC) [297].

To obtain these features for all tracks of the dataset, we apply the following steps: we
perform a conjunctive query for the <track, artist, album>-triples extracted from the
LFM-1b dataset using the Spotify search API? to gather the Spotify URI of each track.
This URI is subsequently used to query the acoustic features API*. Finally, we add tracks
for which can obtain all required features to the dataset®

Since the set of tracks a user listened to may also contain outlier tracks that may distort
the user profile, we propose to remove outlier tracks from this set by applying the median
absolute deviation (MAD) outlier detection method [282]. We consider a feature value
an outlier if it is not within M + a - M AD, where M is the median of this particular
feature across all tracks of a user and M AD is the median absolute deviation of these
values. We consider a value an outlier if it is not within within three M ADs around the
median, setting a rather conservative threshold a=3 as proposed by [282]. Lastly, a track
is considered as an outlier in the list of tracks of a particular user if one of its features is
considered an outlier and consequently removed from the user listening history.

Applying this procedure results in a dataset of 55,149 users, 394,944 868 listening events
and 3,478,399 distinct tracks. We randomly sample users from this dataset for our
experiments, where we require each user to have more than 100 listening events to ensure
that our user models are representative. We present basic statistics about the resulting
dataset in Table 6.1. As can be seen, on average, each user has listened to 651 tracks.

6.4. User Models

In the following, we present the proposed user models to capture user’s listening pref-
erences. We specifically focus on modeling users solely by acoustic features of tracks
they listened to and deliberately neglect other information that could contribute to a
user model (e.g., demographic user aspects, cultural information or further contextual
features that might improve MRS and MIR performance).

3https://developer.spotify.com/web-api/search-item/

‘https://developer.spotify.com/web-api/get-several-audio-features/

SExcept for tempo, all of these features are given in the range of [0, 1] and for tempo, we apply a linear
min-max scaling.
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Item Value
Listening Events (LE) 8,457,205
Users 12,995
Tracks distinct 965,293
Min. LE per User 1
@1 LE per User 252
Median LE per User 478
Q3 LE per User 826
Max. LE per User 21,660
Avg. LE per User 650.80 (£ 713.99)

Table 6.1.: Dataset statistics.

6.4.1. Feature Space

Based on the users, tracks and their acoustic features within the dataset, we perform
the following steps prior to the computation of the user models. Most of the proposed
models require clustering tracks based on their acoustic features to find groups of tracks
that exhibit similar features. Given that we aim to perform a large-scale analysis of the
proposed user models (we perform the analysis on 8 million tracks and 13,000 users),
these clustering computations are computationally intensive. Hence, we firstly perform a
proximity-preserving dimension reduction on the input data by applying UMAP (Uniform
Manifold Approximation and Projection) [311]|. Also, the use of latent representations of
elements in the musical ecosystem (users, tracks, etc.) has been to be effective in MIR
and MRS tasks [92, 280, 324]. In our experiments, we compute a 2-d latent representa-
tion of tracks for the computation of user models. This allows us to inspect the resulting
clusters visually during the development of the user models and, more importantly, re-
duces cluster computation time substantially, which naturally permits better scalability
for larger datasets.

6.4.2. User Models

For modeling user preferences for musical tracks and their characteristics, we naturally
require models for both tracks and users as we utilize a user’s model and compare it with
track models to find suitable similar tracks that may be recommended to the user.

As for modeling tracks and their characteristics, we rely on their acoustic features (AF;
e.g., danceability or tempo). However, for users we require more sophisticated user
models, as these have to represent a possibly extensive and diverse set of tracks and
their characteristics to eventually represent a user’s musical preferences. We propose
user models that are based on clusters of similar tracks and utilize a user’s membership
in these clusters (i.e., the fact that user has listened to tracks that belong to a given
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cluster) to get a fine-grained representation of the many faces of the listening preferences
of a given user. For determining such clusters and computing the membership of tracks
in these clusters, we experiment with two approaches: (i) we utilize k-means clustering
to find tracks that exhibit similar acoustic features and use the characteristics of these
clusters to characterize users; and (ii) we apply Gaussian Mixture Models (GMM) [312]
as these allow to model a track by the computed probability density function regarding
the GMM’s components. Based on a track’s density functions, we derive a set of GMM-
based user models. Generally, the idea is that based on these clusters or components,
we aim to model a user based on the characteristics of one or multiple of these track
clusters.

In the following, we describe the proposed user models to capture the musical preferences
of users. An overview of the user models and the features used to characterize users and
tracks is shown in Table 6.2.

Content avg: In a baseline model, we utilize the eight acoustic features of all tracks a
user has listened to and compute the average across all tracks of a user for each of the
features presented in Section 6.3. This allows us to describe a user with his/her average
listening behavior, breaking a user’s preferences down into eight acoustic features. Please
note that in the remainder of this paper, we refer to models as Content-models if the
representation of the user or a track relies on acoustic features.

Content avg, sd: This model is built upon the Content avg model, which we extend
by adding the standard deviation of each of the acoustic features across all tracks of
a user. We expect the added SD to mitigate the effects of averaging a large number
of features that potentially differ substantially as users may listen to music with highly
diverse acoustic characteristics. We again consider this model a baseline that additionally
quantifies to which extent the user’s musical preferences vary regarding the acoustic
features of his/her listening history.

Content binary k-means: In this model, we rely on the clusters computed by a k-
means clustering of all tracks within the dataset in the computed 2-d latent space. In
a next step, we attribute each of the tracks a user has listened to a cluster and do a
majority vote on the clusters to obtain the cluster that holds most of the user’s tracks.
We subsequently model a user using the characteristics of the cluster that contains the
majority of the user’s track. To represent this cluster, we compute the average of the eight
acoustic features of all tracks contained in the cluster and add the according standard
deviations. Single tracks are represented by its acoustic features. We consider this a
rather simple model as we assign the user to a single cluster and hence, limit the model
to a single preference scope.

Content weighted k-means: The previous model is limited as it is restricted to a

single preference scope. To tackle this problem, we propose the Content weighted k-
means model in which we now aim to address multiple sets of preferences of a user.
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Model User Features Track Feat.
Content avg user AF avg AF

Content avg, sd user AF avg and SD AF

Content binary k-means avg. AF of single cluster AF

Content weighted k-means weighted avg. AF of clusters AF

GMM avg. densities of user’s tracks GMM densities
Content binary GMM avg. AF of single GMM comp. AF

Content weighted GMM weighted avg. AF of GMM comp. AF
GMM -+ Content avg, sd ~ GMM and user AF avg and SD GMM, AF

Table 6.2.: Overview of evaluated models (AF stands for acoustic features, GMM for
Gaussian Mixture Model and SD for the standard deviation).

Therefore, we again rely on the k-means clusters, however, we compute a weight for each
cluster based on the number of tracks a user has listened to in each cluster. Based on the
user’s weights for each cluster, we compute a weighted average for each acoustic feature
to represent the user, where each cluster is again characterized by its average acoustic
features and its standard deviation. Again, in this model each track is represented by its
acoustic features.

GMM: In this model, we utilize a Gaussian Mixture Model [312] for representing both
the track and the user. Therefore, we compute Gaussian components and represent a
track by its probability densities regarding the GMM components. For users, we compute
the average probabilities for each component across all of the user’s tracks to model a
user’s musical preferences by using the GMM components. We consider this model
a proxy, as it does not directly utilize acoustic features to represent a track, but the
probabilistic assignments of a track to a set of groups of tracks (components).

Content binary GMM: In contrast to the pure GMM model, this model relies on
content features instead of probability densities to represent a user. Analogously to
the Content binary k-means model, we rely on GMM to assign the user’s tracks to
components. In particular, we assign the tracks found in the user’s listening history to
GMM components. In a next step, we select the component with the highest number
of user tracks assigned to, where we assign a track to the component with the highest
probability density for the track. The user is then modeled by the characteristics of the
selected component (again using the average and standard deviation across all acoustic
features of the tracks assigned to the component), whereas each track is again represented
by its acoustic features.

Content weighted GMM: This model is again analogous to the content weighted
k-means model. However, we rely on a GMM to assign a user’s tracks to certain a com-
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ponent as described in the previous model. Based on these assignments, we analogously
compute the weighted mean and standard deviation for each acoustic feature for each
GMM cluster to represent a user and the characteristics of tracks are captured by their
acoustic features.

GMM —+ content avg, sd: In this model, we combine the GMM components baseline
model with the content avg, sd baseline model and hence, represent a user by his/her
component weights regarding the Gaussian Mixture Model and further add the average
and standard deviation across all acoustic features of the user’s tracks. Similarly, a track
is represented by its GMM densities and its acoustic features.

We also performed experiments on representing users and tracks with cluster or com-
ponent assignments only and did an analysis of further combinations of the proposed
models. However, the results were below the evaluated baselines and hence, we do not
list these models here.

6.5. Experimental Setup

We model the evaluation of the proposed user models as a recommendation task, where
we aim to obtain a ranked list of tracks that are of interest to the user. For this task, we
rely on Gradient Boosting Decision Trees. Particularly, we utilize the popular XGBoost
system [93], a scalable end-to-end tree boosting approach that has been shown to be
highly suited for recommendation tasks [31, 340]. For the training phase of the tree, we
set the training objective to be the binary classification error rate (i.e., the number of
wrongly classified tracks in relation to all tracks classified, where tracks with a predicted
probability of relevance larger than 0.5 are classified as relevant for the given user, and
all other tracks are considered irrelevant for the user). Please note that we deliberately
chose a classification-based recommendation approach and refrained from utilizing more
elaborate recommender approaches such as context-aware matrix factorization [34] or
tensor-based factorization approaches [235] as we aim to focus on user modeling aspects
in this paper.

For the recommendation task carried out, we require a rating for each track in the dataset
to define whether a given track was listened to and thus, considered relevant for a given
user. Hence, we add a binary factor rating to the processed dataset: for each unique
<user, track>-combination, the rating r; j is 1 if the user u; has listened to track ¢;. Due
to a lack of publicly available data, our dataset does not contain any implicit feedback
of users (i.e., skipping behavior, session durations or dwell times during browsing the
catalog). This is why we cannot estimate any preference towards a track a user not
listened to as proposed by [199]. Thus, we assume tracks the user has not listened to
as negative examples [199] and hence, assign a rating of 0 to these tracks. Even though
there is a certain bias towards negative values as some missing values might be positive,
Pan et al. [341] found that this method for rating estimation works well. To perform the
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proposed recommendation task via classification, we require the dataset to also include
negative examples. Therefore, for each user, we add random tracks the user did not
interact with (i.e., tracks ¢; with r; ; = 0 for the given user u;) to the dataset until both
the training and test sets are filled with 50% relevant and 50% non-relevant items. We
chose to oversample the positive class to avoid class imbalance and hence, a bias towards
the negative class.

Using the resulting data set, we train a XGBoost model that performs a binary classifica-
tion on the relevance of tracks for a given users. We extract the probabilities underlying
the classification decision to rank tracks by their probability of relevance in the recom-
mendation task.

To evaluate the performance of the proposed user models in regards to recommendation
quality, we perform a per-user evaluation. Therefore, we use each user’s listening history
and perform a leave-k-out evaluation (also known as hold-out evaluation) [64, 106] per
user. Based on the dataset that now contains both positive and negative samples for
each user, we compute a hold-out set of size k: along the lines of previous research [139,
185], we randomly select 10 positive samples (tracks that the user has listened to) and
100 negative samples (tracks the user has not listened to). These 110 tracks form the
test set for each user, whereas the recommender system is trained on the remainder of
the dataset. We compute the predicted ratings for the tracks in the test set and rank the
track recommendation candidates w.r.t. the probability that the current track belongs
to the positive class in descending order. For our experiments, we consider all predicted
probabilities > 0.5 as a predicted interaction and thus, we consider these items as rele-
vant, all others as irrelevant and hence, not added to the list of recommendations.®

Based on the predicted ratings, we compute preciston, recall, and the Fj-measure to
assess the top-10 accuracy [105]. We evaluate the 10 top ranked tracks as too many
track recommendations might provoke choice overload and hence, is not feasible. The
problem of choice overload has been addressed by Bollen et al. [57] who state that user
satisfaction is highest when presenting the user with Top-5 to Top-20 items—naturally
assuming that the recommendation list contains a sufficient number of relevant items
for the user. For assessing the overall precision, recall, and Fi-measure of the evaluated
recommender systems, we compute the measures for each individual user and compute
the average among all users. For computing the recall measure, all relevant items in the
test set are considered, independent of the number of recommendations. Thus, there is
a natural cap for recall, namely the number of recommendations divided by the number
of relevant items in the test set.

For the tuning of XGBoost parameters, we did a preliminary cross-evaluation aiming to
optimize precision values for the proposed models and hence, set the number of maximum

5This distinction between the two classes is also utilized by XGBoost for binary classification tasks
based on logistic regression.
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trees to learn the models to 2,000. For all other parameters, we relied on the default
settings. For the training and tuning of k-means and GMM for the creation of the
user models, we performed the following steps. For k-means, estimated the number
of clusters by utilizing the elbow method based on the within-cluster sum of squares.
For the given dataset, we estimated the number of clusters to be 5. For the GMM,
we performed a training phase based on expectation maximization and determined the
number of components using the Bayesian Information Criterion (BIC), which resulted
in a total of 9 components for the GMM.

6.6. Results

We present the results of our evaluation for a recommendation list of size ten in Table 6.3
and in a precision-recall plot depicted in Figure 6.1.

The best results are obtained by the GMM + Content avg, sd model, reaching a pre-
cision@10 of 0.771 and a recall@10 of 0.427 and hence, achieving substantially higher
precision and recall scores than any other model. Comparing the results of this model
to the GMM model (relying on solely the assignments to GMM components) and the
Content avg, sd baseline model shows that those two models individually perform sub-
stantially worse than when combined. When inspecting the results of the GMM model,
we find that solely relying on the GMM density functions does not suffice to represent
a user’s musical taste. Particularly, all content-based GMM or k-means models achieve
higher performance when applied in isolation. However, combining a simple content-
based approach that provides acoustic features regarding the user’s general preferences,
with GMM, provides us with a representative user model. This suggests that the GMM
model captures a user’s diverse preferences regarding the detected components and hence,
his/her distribution in preference towards specific types of music, while his/her general
preferences are captured by the average acoustic features and the according standard
deviation.

Model Prec Rec Fq
GMM + Content avg, sd  0.771 0.427 0.632
Content k-means weighted  0.606  0.316  0.400
Content k-means binary 0.573  0.300 0.383

Content binary GMM 0.569 0.298 0.381
Content weighted GMM 0.569 0.298 0.381
GMM 0.231 0.122 0.226
Content avg, sd 0.161 0.089 0.241
Content avg 0.159  0.087 0.241

Table 6.3.: Precision, Recall and F1@10, ordered by F;.
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Our results also show that the user models based on k-means clusters slightly outperform
the methods based on GMM components (1.8% in recall, 3.7% in precision). Please note
that for k-means we determined the number of clusters to be five, whereas we created
nine GMM components (as described in Section 6.5). Our findings regarding the number
of clusters are also in line with previous analyses on playlists [362], where the authors
found that clustering the tracks within playlists into five clusters allows for cohesive and
homogeneous clusters.

The weighted k-means approach achieves better results than the binary k-means ap-
proach. This seems natural as the former incorporates the user’s membership in all
clusters, whereas the latter does a majority vote and utilizes the resulting (single) cluster
to characterize the user. However, this does not hold for the GMM-based approaches.
While the differences between the weighted and binary k-means approaches are marginal,
for GMM there is no difference between weighted and binary Content GMM.

The proposed baseline model Content avg achieves the lowest values regarding recall,
precision and F;. Adding the standard deviation to this model hardly impacts the results.
We initially suspected that adding the SD to the model may allow mitigating the effects
of aggregating possibly highly different tracks as we aggregate across all tracks of a user
(regarding their acoustic features), however, this is not confirmed by our experiments. In
preliminary experiments, we also used different representations of clusters: while we now
utilize the mean acoustic features and the according SDs, we also used only the mean
features. We found that the SD contributes only marginally as the dispersion of tracks
in regards to acoustic features is already captured by the individual clusters/components
and hence, the tracks contained in a single cluster/component are more homogeneous.
We also experimented with models that utilize user-cluster assignments for k-means,
however, those models achieved inferior results. In contrast, representing those clusters
by the average acoustic features across all contained tracks seems to be representative.
Combining k-means cluster assignments with content-based models also lead to inferior
results, which we lead back to the fact that the GMM probability densities provide more
information than sheer cluster-assignments.

Generally, we conclude that content features strongly contribute to user models and that
grouping tracks into clusters (k-means) or components (GMM) and solely relying on the
assignment to those clusters or components is not sufficient for a representative user
model. Finding groups of similar tracks to represent users by user-group assignments
via the tracks a user listened to is not expressive enough. Naturally, utilizing content
features allows to compute higher-dimensional similarities between users and their tracks
(in our experiments, 8 dimensions) and hence, a more fine-grained notion of similarity.

78



6. Content-based User Models

0.84

0.64

Precision

GMM + Content avg, sd
041 Content weighted k-means
= = Content binary k-means
= Content binary GMM

= Content weighted GMM

= = Content avg

0.24 Content avg, sd

e GMM

0.0 0.2 0.4 0.6 0.8
Recall

Figure 6.1.: Precision-Recall curves for all models.

6.7. Discussion

We find that a GMM that captures the specific preferences of a user towards a set of
nine types of music (captured by nine GMM components) complemented by the general
musical preference of a user (captured by the avg. acoustic features of his/her tracks)
provides the best results.

Regarding the limitations of this study, we note that the content descriptors utilized are
aggregated high-level features. This allowed us to keep the feature space smaller and to
specifically focus on the user modeling aspects. Furthermore, this evaluation is solely
based on aspects related to the content of tracks and no further user-related aspects
as e.g., proposed by Schedl et al. [417]. Lastly, while the proposed models character-
ize users based on their interest in different clusters/components and hence, are able to
build more specific user models, we still represent each cluster/component by the mean
acoustic features of the tracks contained, which naturally limits the user model’s speci-
ficity. However, we believe that our findings are a valuable contribution to advance user
modeling for MIR and MRS and to foster further research in this direction.

6.8. Conclusion and Future Work

We proposed and evaluated a set of user models for describing the musical preference of
users by leveraging content descriptors of tracks the user has listened to. We find that a
GMM complemented by the user’s general musical preferences describes a user’s different
musical preferences best. We believe that our findings can contribute to improved user
models for music recommender systems and generally, MIR tasks. In future work, we
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aim to investigate methods to combine the models evaluated by e.g., ensemble methods.
Furthermore, we aim to tackle the problem that our current model still computes average
acoustic features across a large number of tracks.
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Abstract

Mood and emotion play an important role when it comes to choosing musical tracks to
listen to. In the field of music information retrieval and recommendation, emotion is
considered contextual information that is hard to capture, albeit highly influential. In
this study, we analyze the connection between users‘ emotional states and their musical
choices. Particularly, we perform a large-scale study based on two data sets containing
560,000 and 90,000 #nowplaying tweets, respectively. We extract affective contextual
information from hashtags contained in these tweets by applying an unsupervised senti-
ment dictionary approach. Subsequently, we utilize a state-of-the-art network embedding
method to learn latent feature representations of users, tracks and hashtags. Based on
both the affective information and the latent features, a set of eight ranking methods
is proposed. We find that relying on a ranking approach that incorporates the latent
representations of users and tracks allows for capturing a user’s general musical prefer-
ences well (regardless of used hashtags or affective information). However, for capturing
context-specific preferences (a more complex and personal ranking task), we find that
ranking strategies that rely on affective information and that leverage hashtags as context
information outperform the other ranking strategies.
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7. Leveraging Affective Hashtags for Ranking Music Recommendations

7.1. Introduction

People listen to music for different reasons: to relieve from boredom, fill uncomfortable
silences, social cohesion and communication, emotion regulation, etc. [298, 404|. From
an affective computing point of view, it is interesting to investigate the relationship
between a user’s musical preference and the user’s emotional state. There have been
many psychological studies on the role of music in emotion regulation [298, 394, 472|. The
emotional state of a listener has also been considered as important contextual information
in building recommender systems [33, 146, 387|. A possible application is to build a
system that monitors people’s emotion and predicts how to subliminally impact them by
recommending different music pieces. However, as the emotional state of a user is hard to
capture in a large-scale study, most existing studies are conducted in a laboratory setting.
It remains unclear to which extent such findings can be generalized to the real-life usage
of music [484].

Seeing the popularity of social microblogging websites such as Twitter', we have new
opportunities to study real-world music listening behavior at scale [183, 358, 408, 509].
Most interestingly for our study, Twitter allows for gathering so-called #nowplaying
tweets [509], which are tweets describing the track a user is currently listening to. One
such example tweet is “#nowplaying Crazy For You by Adele #Happy”. In this example,
the user not only publishes the music track and artist he/she is listening to, but also adds
a hashtag (i.e., keywords or phrases starting with the symbol ‘#’) describing his/her con-
current emotional state. Users add these hashtags spontaneously in real life, and there is
an abundant number of such #nowplaying tweets with affect-related hashtags. We are
therefore particularly interested in how the affective hashtags within a tweet are related
to the user’s musical preferences. For this purpose, we consider only #nowplaying tweets
containing hashtags that represent some notion of emotion (i.e., contextual information),
and aim to study their role in providing contextual affection-aware music recommenda-
tions tailored to the user’s current emotional state and musical preferences. We have the
following two research questions (RQs) to be answered:

e RQ1: How can affective contextual information contribute to improving personal-
ized ranking of track recommendation candidates?

e RQ2: How can we computationally represent the affective contextual information
in a #nowplaying tweet?

There has been excellent work on context-aware recommendation and representation
learning [10, 235, 333, 371, 433], sentiment analysis from text [265, 329, 331, 342, 428],
as well as emotion-based music recommendation [37, 88, 117, 178]. The main novelty of
this study lies in the way we study the aforementioned two RQs by adapting existing
techniques. Specifically, our study differentiates itself from the prior arts in the following
aspects:

"http://twitter.com
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First, we propose to employ, and compare the result of, two evaluation tasks to highlight
the importance of contextual information (Section 7.3). For a given user and a context,
the first task requires ranking the relevance of a set of tracks that are picked at random,
whereas the second task requires ranking a set of tracks that are known (from the train-
ing set) to be associated with the user. While the first task is mainly about the general
preference of a user (i.e., which tracks a user would like), the second task requires mod-
eling the context-specific preference of a user for we already know that all the candidate
tracks are liked by the user but only one of them can be ranked at top given that specific
listening context. An algorithm cannot perform well if it does not know how a user’s
emotional context affects his or her musical preference. In comparison, existing work on
context-aware recommendation usually focuses on the algorithms and simply takes the
full catalog of data in their evaluation [235, 333, 371, 433]. Such an evaluation method
does not distinguish between tracks that have been known to or not by users, making
it hard to assess whether an algorithm learns the general preference or context-specific
preference. This is less a concern for a general recommendation algorithm but is critical
in addressing our RQs.

Second, to investigate the affective contextual information embedded in the #nowplaying
tweets, we propose to treat the user-track-hashtag association as a graph and use state-of-
the-art network embedding methods [172, 355, 455| to learn latent feature representations
of users, tracks and hashtags (Section 7.4.2). By experimenting with different combina-
tions of the representations (Section 7.4.3), we can test different assumptions about the
underlying association between users and tracks. For example, a user can be represented
by the user’s own latent representation (denoted as “user”), but can also be represented
by the average latent representation of the hashtags the user has used before in his or her
tweets (“usertag”). Similarly, a track can be represented by its own latent representation
(“track”) or by the average representation of the hashtags the track has been associated
with by different users (“tracktag”). As the hashtags are restricted to be affect-related
ones, “usertag’ and “tracktag’ may respectively capture the general emotional tendency
of a user and a track. A possible consequence is that, if a track is typically listened to
in a specific emotional context across users, “tracktag” may outperform “track” in the
above-mentioned second task, for “tracktag” encodes affective information in a more ex-
plicit way. In total, six ranking methods are considered. To our best knowledge, testing
the representations in such an emotion-centered way has not been attempted before.

Third, in addition to the latent representations, we employ different sentiment dictio-
naries proposed in the literature of sentiment analysis [166, 196, 203, 334, 382, 459| to
implement two ranking methods that solely rely on the sentiment scores (Section 7.4.1).
In this way, we can study RQ2 using two approaches: based on the latent represen-
tations and based on the sentiment scores. Our experiments (Section 7.5) show that
for the first task (capturing a user’s general preferences), utilizing latent representations
for users, tracks and hashtags contributes to better and more personalized ranking re-
sults. However, for the second, more complex and personal context-specific task, the
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Characteristics Original [509] #NP560k #NP90k

Listening events 21,501,261 564,301 85,528
Tracks distinct 654,012 51,045 31,454
Artists distinct 79,011 8,210 8,020
Users distinct 176,909 9,431 9,336

Table 7.1.: Data set statistics.

sentiment-aware ranking methods outperform the other ranking methods. This finding
implies that the more personal and complex a ranking task gets, the higher the influence
and significance of affective information gets.

Finally, although emotion-based music recommendation is not new, existing work mostly
relies on user data collected in a controlled environment and the scale is usually small |37,
117, 178]. In contrast, our study is based on a large collection of Twitter data (around
560K) that contain real-world music listening information (Section 7.2). We will share
the data with the research community for reproducibility and for promoting research in
this direction.

7.2. Data Sets

Generally, we require a data set that provides information about the listening behavior
and emotional states of users for conducting the proposed experiments. Therefore, we
employ the #nowplaying data set compiled by Zangerle et al. [510] for the study, as this
data set provides the required information. The data set is composed of #nowplaying
tweets crawled via the Twitter API [468] and provides the timestamp when the tweet
was sent, an anonymized user id, the tweet’s source (how it was sent), the contained
artist name and track title. An example listening event is: <2016-05-12 16:26:42,
‘7bd5237385a73c54265cd02aal136dbecdb88a0b8’, ‘Twitter Web Client’, ‘Hello,
Goodbye’, ‘The Beatles’>.

To gather a data set that allows for representative user profiles, we chose to extract all
listening events of users who have sent a minimum of ten listening events in the years
2014 and 2015 from the #nowplaying data set. The characteristics of the resulting data
set are shown in Table 7.1 (column “Original”). For our study, we focus on tweets for
which we can detect a sentiment value by using the methods described in Section 7.4.1,
as only this data allows to evaluate the influence of affective contextual information on
the quality of track recommendation rankings. Therefore, we remove the listening events
that do not contain any hashtag that we can obtain a sentiment score for, leading to a
subset containing 564,301 listening events. Statistics of this #NP560k data set are listed
in Table 7.1.
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#NP560k #NP90k
Characteristics Median Q3 Max Mean SD ‘ Median Q3 Max Mean SD
Listening events per user 2.0 40 69,1970 59.83 1,125.48 2.0 4.0 463.0 9.16 31.70
Listening events per track 20 80 1,821.0 11.05 33.65 1.0 2.0 1,031.0 2.72 10.42
Tracks per user 2.0 4.0 69,1970 59.83 1,125.48 2.0 4.0 463.0 9.16 31.70
Distinct tracks per user 2.0 4.0 3,500.0 10.95 78.73 2.0 4.0 319.0 6.26 19.03
Hashtags per user 2.0 5.0 86,855.0 74.10 1,446.10 2.0 5.0 1,025.0 10.84 39.27
Distinct hashtags per user 1.0 3.0 207.0  2.65 5.41 1.0 3.0 108.0  2.57 443
Hashtags per track 1.0 1.0 6.0 1.24 0.47 1.0 1.0 6.0 1.17  0.44
Distinct hashtags per track 1.0 1.0 6.0 1.23 0.46 1.0 1.0 6.0 1.16  0.44

Table 7.2.: Five-number-summaries of (left) the #NP560k data set and (right) the

#NP90k data set. We show (from left to right) the median, 3rd quantile (Q3), maximum,

mean, standard deviation (SD) of the individual characteristics for both data sets. The
minimum and 1st quantile for both data sets are all ones for all the characteristics.

Table 7.2 presents the five-number-summaries describing the tagging and listening behav-
ior of users within the #NP560k data set. We also list the tracks and listening events per
user (overall and distinct) as well as the number of tags per user and per track (overall
and distinct). We observe that while the maximum number of listening events per user,
track and hashtag are very high, the mean, median and the 1st and 3rd quartile of these
characteristics are substantially lower implying that these distributions are skewed and
do not follow a normal distribution. Also, we observe a small number of users and tracks
that feature profoundly higher numbers for the analyzed characteristics in comparison
to the majority of users and tracks. Such heavy-tailed distributions have been shown to
be prevalent in social networks [270, 278].

To mitigate the effects of this distribution on the performance of our approach, we ad-
ditionally apply an outlier removal method to the #NP560k data set. Particularly, we
keep all users within the 99th percentile of the distribution and remove the others, as
this outlier removal method has been shown to be suited for highly skewed distribu-
tions [386]. This presents us with a smaller data set, referred to as the #NP90k data
set in this paper. Table 7.1 depicts the basic characteristics and Table 7.2 presents the
five-number-summaries for the #NP90k data set. While the #NP560k data set features
a number of heavy users (and hence, heavy-tailed distributions), these are removed in
the #NP90k data set, making it less skewed.

Please note that we deliberately removed the hashtags #mnowplaying, #listeningto and
#listento from the data sets as at least one of those hashtags is contained in every
listening event and hence do not add any further information.

In these data sets, not only listening events are tagged with hashtags, also tracks can

transitively (via the listening event the track is mentioned in) be tagged with the respec-
tive hashtags. Similarly, we tag users with hashtags if a given hashtag is used within one
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of the listening events sent by the user. We reason that hashtags have been shown to
serve two roles [495]: i) users wanting to express his/her thoughts, feelings and opin-
ions, ii) using hashtags to tag the content of the tweet. For our study, both factors are
important as we aim to evaluate the potential of affective hashtags for ranking music
recommendations.

7.3. Evaluation Methods

In the following we present the methods deployed for the evaluation of the ranking
methods presented in Section 7.4.

All the experiments are conducted based on the #NP560k and #NP90k data sets pre-
sented in Section 7.2. For conducting the evaluation, we need to split the data sets into
training and test sets and apply different splitting methods for the two data sets. For
#NP560k, we perform the following per-user split: for each user in the data set, we ran-
domly choose 70% of his/her listening events as training data and the remaining 30% as
test data. We believe that this splitting method allows for mitigating the skewness of the
data set as the split is performed on a per-user bases and hence, is robust against domi-
nating users in data set (i.e., users with a high number of listening events). In contrast,
for the #NP90k data set that has already been cleaned from outliers (and is therefore
less skewed), we employ a global split that randomly picks 70% out of all listening events
of all users for the training set and uses the remainder of listening events as test data.
These contrasting splitting approaches permit to investigate the connection between a
user’s emotional context and the user’s concurrent musical preference independent of the
size of user profiles.

For both of these splitting approaches and the underlying data sets, the latent features
of nodes are computed for the items within the training set only and do not incorporate
any information from the test set.

The basic input items for our evaluation are listening events, which are tweets containing
information about a track a user listened to. The workflow of the evaluation is as follows.
Based on a listening event randomly chosen of the test set (hereafter referred to as “input
listening event”) including its affective hashtags, we aim to evaluate the ranking methods
proposed in Section 7.4.3. We consider the track contained in this input listening event
as our ground truth data and our goal is to find ranking methods that rank this ground
truth track first in the recommendation list.

From a recommender system point of view, our data sets represent implicit feedback data
[199, 371]— the data sets represent traces of user behavior and they only provide us with
the tracks a user has listened to. Our data set does not contain any implicit feedback
by users (i.e., play counts, skipping behavior, session durations or dwell times during
browsing the catalog). As most papers dealing with implicit feedback [199]|, what we
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can do is to assume that the user likes these tracks. We are not aware of the tracks
that the user dislikes. In other words, all the listening events contained in our data
sets are positive data, and there is no negative data at all. This has been referred to
as the one-class problem [341]. To learn discriminative latent feature representations,
we need to perform so-called negative sampling [172, 355, 455] to include user-track-
hashtag associations that are not present in our data sets as negative data (cf. Section
7.4.2). Likewise, for evaluation, we need to sample negative data to test how our ranking
methods can identify the positive track and rank it on top of the list.

Different ways to perform negative sampling for the test set represents different evaluation
tasks. As described in Section 7.1, it is possible to use the full data catalog as negative
data, as many prior work on context-aware recommendation do 235, 333, 371, 433], but
in this way we are not able to properly study the two RQs. Alternatively, we consider
the following two evaluation tasks.

Firstly, we aim to evaluate whether our proposed approach is able to capture the general
listening preferences of users. Therefore, we propose the POP _RND task, where we add
nine randomly chosen tracks to the list containing the input listening event to populate
the list. This task allows us to evaluate whether our approach is able to capture the
general listening preferences of users.

Secondly, we aim to evaluate a context-specific scenario where we model the sentiment of
a user as the context in which tracks are listened to by users. We consider this scenario as
more complex than solely capturing the general listening preferences of users. Therefore,
we propose the POP _USER task, where we randomly pick nine tracks the user has
previously listened to and add these to the set of tracks to be ranked. This requires the
user to have a listening history comprising at least ten tracks.

As this task selects tracks that are associated with the user, we are able to evaluate
the performance of incorporating contextual sentiment and hashtag information in the
ranking computation as we have to employ context information to be able to rank those
tracks effectively. Therefore, we argue that this task allows us to directly evaluate the
usefulness of hashtags and sentiment scores.

We propose to evaluate the ranking performance of our approach for sets of ten tracks.
In the field of recommender systems, a set of 5-10 recommendations is most appropriate
which also corresponds to the capacity of short-term memory [320]. Furthermore, the
work by Bollen et al. [57] underlines this choice as the authors conducted an experi-
ments showing that presenting users with a large number of good and valuable items is
counterproductive as the choice of an item becomes inherently difficult for the user.

The (unordered) set of ten tracks resulting from the proposed data generation is subse-

quently used as input for the recommendation ranking evaluation. In the next step, we
apply the proposed ranking methods to this set of track recommendation candidates.
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As for the evaluation metric, we rely on the mean reciprocal rank (MRR) metric [477] as
defined in Equation 7.1 to evaluate the rank of the single correct item. We choose MRR
as we are only interested in how the ranking methods perform in regards to ranking the
ground truth track as high as possible in the ordered list of recommendation candidates.
Ranking the ground truth one as the first item yields a RR of 1, ranking it second yields
a RR of 0.5, etc. As the lists to be ranked in our experiments only contain a single
correct item, the maximum RR obtainable is 1.

1

RR(it = —
(item) rank(item)

(7.1)
In total, we repeat this evaluation procedure for a set of 20,000 listening events randomly
extracted from the test set for all the proposed ranking methods and consequently, de-
termine the mean RR (MRR) for the set of all ranked recommendation lists contained
in the evaluated set of listening events. We use these to compare the performance of the
ranking methods and the underlying latent features.

7.4. Computational Methods

In the following section, we present the methods utilized for leveraging affective hashtags
for music recommendations.

7.4.1. Sentiment Detection for Hashtags

The extraction of sentiment polarity from a given word, sentence or text has been studied
widely [331, 342]. Also, sentiment detection in the context of Twitter has been addressed
by research [265, 329, 428]. In this study, we focus on hashtags that express emotion.
Therefore, we aim to detect the sentiment of hashtags in a first step. For this task,
we rely on a widely used unsupervised sentiment detection method: so-called sentiment
lexica [331]. In principle, sentiment lexica are dictionaries of words, where each word is
annotated with its polarity (and possibly, also the strength of this polarity). For detecting
the sentiment of a term, it is simply matched against a given lexicon. In the following,
we describe the specific steps taken for assigning sentiment values to the hashtags within
our data set.

Sentiment Dictionaries

We rely on well-established dictionaries which have been widely used and evaluated [166,
382|. In particular, we use the dictionaries that provide both the best coverage and
performance in terms of accuracy according to the study of Ribeiro et al. [382]. Table 7.3
contains an overview of the adopted lexica.

The AFINN dictionary [334] was assembled from a set of different word lists (e.g., obscene
words and internet slang words) and manually annotated by a single annotator. Opinion
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Name #Terms Coverage
Hashtags LEs Tracks
AFINN [334] 2477  57.64%  46.87% 54.67%
Opinion Lexicon [196] 6,789  44.86%  44.35% 47.48%
SentiStrength [459] 2546  71.23%  73.97% 71.50%
Vader [203| 7,517  57.63%  57.80% 61.54%

Table 7.3.: Sentiment dictionaries and their coverage of the #NP560k data set; ‘LE’ is a
shorthand for listening event.

Lexicon [196] is computed by using antonym and synonym relationships among words and
using this information to deduce scores for adjectives. The SentiStrength lexicon [459] is
based on a manually annotated dictionary, which is subsequently improved by adjusting
the scores by machine learning techniques. The Vader dictionary [203] is also created by
human annotation and is particularly geared towards sentiment analysis of social media
texts.

Affection Computation

Based on the set of hashtags contained in the data set, we employ the following strategy
to resolve hashtags against a given sentiment dictionary. Firstly, we aim to match full
hashtags against the dictionary, both lowercased. However, this does only match hashtags
which represent full proper English words (e.g., #happy). For all other hashtags, we apply
lemmatization, as provided by the Python NLTK Wordnet package?. Consequently, we
match these lemmata against the lemmata of the given lexicon. For hashtags that cannot
be resolved directly or after lemmatization, we assume that these are either compound
words or can simply not be found in the given dictionary. As for compound hashtags,
these can either be written as camel case as e.g., #IAmHappy or a concatenation of multiple
lowercased terms as e.g., #feelinggood. We aim to split these compound hashtags
to match the single terms contained in the hashtag against the sentiment dictionaries.
Therefore, we use the split words (i.e., {I, am, happy} for the above example) to represent
the hashtag. As for camel case-hashtags, we split the hashtag using upper-case characters
as delimiters. The problem of segmenting all-lowercase compound hashtags has already
been addressed in literature [441]. Therefore, we follow previous work [466] to split these
up. As the sentiment lexica are limited to English words, we base our approach on a
dictionary of 109,582 English words3. We split the original hashtag at each position and
look into whether the prefix is contained in the dictionary. If it is contained, we recursively
repeat the procedure until we find an optimal result. Once we found a representation of

2http://www.nltk.org/howto/wordnet . html
3http://www-01.sil.org/linguistics/wordlists/english/
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the hashtag that consists of a set of individual terms using the methods described, we
match these terms against the sentiment lexicon individually. We assign the hashtag the
mean of the sentiment scores of all terms contained in the original hashtag.

Table 7.3 features an overview of the coverage of the different sentiment lexica. Here, we
list the percentage of hashtags that can be resolved against the various dictionaries for
the #NP560k data set. Similarly, we also list the fraction of listening events and tracks
that can be assigned a sentiment value using the respective dictionary. Please note that
despite the difference in size between the #NP560k and #NP90k data sets, the coverage
of the individual sentiment lexica is comparable for both data sets and hence, we only
list the coverage numbers for the #NP560k data set here. Besides using these single
sentiment dictionaries, we also propose to exploit the variety and extended coverage of
the combination of multiple dictionaries by using the mean value of all sentiment values
across all available sentiment dictionaries gathered for a given hashtag.

The lexica have different ranges of polarity scores (e.g., AFINN from -5 to 5, and Opinion
Lexicon from — 1 to 1). Therefore, before computing the mean values, we normalize them
by using linear min-max feature scaling.

7.4.2. Computation of Latent Features

While there are many methods for learning feature representations of users, tracks and
hashtags from listening data, we employ the so-called network embedding technique [172,
355, 455] to learn such representations. The task of network embedding is to learn the
low-dimensional representations of vertices in an information network that can capture
and preserve the network structure in the representations. Such network embedding
methods are useful for modeling data containing heterogeneous types, which is exactly
the case here as we have users, tracks and hashtags to be modeled. In particular, we
build a graph containing these three object types from the data sets and then use a
network embedding algorithm to learn their representations. Although several network
embedding models have been proposed, for this work we use the well-known DeepWalk
approach [355]. DeepWalk is one of the most popular network embedding algorithms
owing to its effectiveness in modeling the global structure of the input graph [355]. The
algorithm learns low-dimensional latent feature descriptions for all the vertices (including
users, tracks, and hashtags) within the graph, allowing us to compute their similarity in
a joint feature space.

Given a graph G and its vertices V' and edges F, the objective is to model the following
conditional probabilities:

sim(v;, vj)

L ST 72
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Figure 7.1.: Suppose the task is modeling the user-track pair (u, t3), the original modeling

function requires to compute all pair-wise estimations (i.e., (u,t1), (u,t2), (u,t3)) while

the transformed hierarchical softmax computes the estimations with only the passing
nodes (i.e., (u,b1), (u,b2)).

where sim is a function that measures the similarity between two vertices v; and v; based
on their representations. Therefore, the vertices sharing similar neighbors receive similar
conditional probability distribution.

To obtain the low-dimensional representations of each vertex, we further conduct a map-
ping function ® : v € V — RIVI*? in Equation (7.2) to map the node v into a low-
dimensional vector ®(v), which also satisfies the above objective function:

sim(®(v;), v;)

>y, STM(P (), vg) | (7.3)

p(vj|®(v;)) =

Instead of computing all vertex pairs, which is quite expensive owing to the number
of given vertices, DeepWalk factorizes the conditional probability using the hierarchical
softmax [322] to assign each vertex a series of binary codes by Huffman tree construc-
tion. For a pair (,7), suppose the path to vertex v; is identified by a sequence of tree
nodes [bg, b, - -], then the final objective is converted to multiple binary classification
predictions:

p(vj|®(vi) = [T p(bi]®(vi). (7.4)

l

Thereby, the computational complexity is reduced by the transformation from O(|V]) to
O(log|V]). Figure 7.1 shows the idea of the hierarchical softmax transformation.
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Figure 7.2.: The paths (right) are generated by random walks according to the given

graph (left). When the window size is set to two, the connected vertices within two

steps are treated as the context information of the centered vertex. In this way, vertices

with similar neighbor connections will receive similar connection status and thus, receive
similar probability distributions.

In order to further efficiently learn the low-dimensional representations, DeepWalk also
uses sampling techniques for conducting the concept of random walk, which is a common
technique when dealing with a huge graph. Figure 7.2 plots the stochastic random walk of
DeepWalk. It uses a random walk strategy to generate a path, and then adopts a certain
window size to dynamically sample the observed pairs (v;,v;) for modeling Equation
(7.4). The appearing probability also implies the reachability between two vertices, and
can serve as sim in Equation (7.2). Finally, the vertices which share similar neighbors
will pass similar tree node paths and thus, receive similar representations. For optimizing
the representations, stochastic gradient descent |61] is utilized.

Differently designed graphs underlying the DeepWalk computation can lead to different
assumptions on the relationships among the vertices in the graph.

In a conventional recommendation task, the connections between users and tracks (i.e.,
the listening events) provide the most useful information about users’ taste on music.
Hence, we build a user-to-track graph (u2t) as the baseline network.

In our study, to analyze the impact of hashtags, we further add the connections between
tracks and hashtags to the baseline network. Although there are several other ways
to construct the graph, such as ‘u2t2h’ (i.e., no direct connection between users and
hashtags), ‘u2h2t’ (i.e., no direct connection between users and tracks), ‘t2u2h’ (i.e.,
no direct connection between tracks and hashtags), and ‘uth’ (i.e., allowing connections
among users, tracks and hashtags), we select u2t2h out of the other four because in this
way, the sampled random walks will always visit a track every two steps, as demonstrated
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in Figure 7.2. According to our observations, placing the tracks at the center of the
modeling process in this way obtains better representations. Consequently, we employ
the following two input graphs for computing the DeepWalk latent features:

e u2t: This represents the user-to-track bipartite graph, the relations of which are
determined by whether a user has listened to a track in previous listening events.

e u2t2h: The user-to-track-to-hashtag graph that further considers the links between
a track and its hashtags.

7.4.3. Ranking

The goal of ranking is to list the most suitable items (tracks in this study) on top. It is
therefore a crucial task not only in recommender systems [8], but also more generally in
the area of information retrieval [343] as it directly influences precision of recommenda-
tions or search results.

The main building blocks for computing a ranking for a set of recommendation candidates
are users, tracks and hashtags that are extracted from the graph. The employed network
embedding technique allows us to represent users by the latent features computed for
users. We refer to this representation as “wuser”. To also explicitly incorporate the
hashtags that a user has previously adopted into the user’s representation, we propose
to use the latent representations of the hashtags the user made use of, leading to the
user representation “usertags”’. A user may also be represented by the average sentiment
value assigned to these hashtags as a measure of the user’s general sentiment, which is
a scalar. We refer to this user representation as “wusersent”. Similarly, we may model
a track by its latent representation in the graph (“track”), the latent representations
of all the hashtags which have been used to tag the track (“tracktags”), or the average
sentiment value assigned to these hashtags as the track’s general sentiment (“tracksent”).
Furthermore, we aim to exploit information about the hashtags which are used for the
given input tweet by using the average latent representation of these hashtags, leading
to the representation of a tweet (“tweettags”). Besides solely relying on latent features,
we also propose to represent the input tweet as the sentiment value associated with the
hashtags mentioned in the input tweet (“tweetsent”).

Based on these building blocks, we propose the following methods for ranking a given
set of tracks. In principle, these methods differ in the way users, tracks and hashtags are

characterized.

e user track: rank according to the similarity of the latent representations of a
given user and track.
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user _tracktags: rank according to the average pairwise similarity of the latent
representation of the user and the individual latent representations of hashtags
annotating the given track.

usertags track: rank according to the average pairwise similarity of the latent
representations of hashtags a user has made use of and the latent representation of
the track.

usertags tracktags: rank according to the average pairwise similarity of the
latent representations of the hashtags of a user and the latent representations of
hashtags used for annotating the given track.

tweettags track: ranking computed based on the average pairwise similarity of
the latent representations of the hashtags used in the given input tweet and the
latent representation of the track to be ranked.

tweettags tracktags: rank according to the average pairwise similarity of latent
representations of hashtags of the input tweet and hashtags annotating the track
to be ranked.

tweetsent tracksent: rank according to sentiment score similarity by using the
difference of the sentiment scores assigned to the input tweet and the sentiment
scores assigned to the tracks to be sorted. If a tweet or track features more than a
hashtag, we compute the average sentiment score assigned to the track and compute
the difference between these as

sim = abs(avg(sent(tweet)) — avg(sent(track))) (7.5)
where sent determines the set of sentiments assigned to a given tweet or track.
usersent tracksent: rank according to the sentiment score similarity between

the average sentiment of the user’s previously used hashtags and the sentiment
values annotating the track.

We can use either the cosine similarity or the Euclidean distance to compute the similarity
between two latent representations. This similarity score is subsequently used to actually
rank the tracks in order of descending similarity.

7.5. Results

We conduct three experiments in our study. The first and fundamental experiment aims
to verify that utilizing an embedding approach is beneficial in our setting and that em-
bedding approaches allow to capture a user’s general listening preferences. The second
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experiment (and for us, the central experiment) aims to extensively evaluate the per-
formance of different ranking methods and hence, the impact of affective contextual
information extracted from hashtags. The third experiment is targeted at complement-
ing our view on sentiment-based ranking methods and investigates the performance of
individual sentiment lexicon. We present the results below.

7.5.1. Experiment 1: Effectiveness of Latent Features

In the first experiment, we aim to show that incorporating latent features contributes to
a better ranking, capturing the general listening preferences of users. We therefore base
this evaluation on the POP RND task and evaluate the performance of the user track
ranking method (similarity of latent features of users and tracks), where latent features
are computed based on the user-to-track graph (u2t). Hence, we do not consider any
hashtag or affective information in this first experiment. We compare this approach with
the following baseline methods:

e A random ranking approach that randomly shuffles the items within the recom-
mendation list;

e Ranking according to the tracks’ popularity within our data set (i.e., the number
of distinct users having listened to the track) [157, 370|. Picking random items or
the most popular items are basic and simple baselines often used for dealing with
the cold-start problem [370];

e An item-item-based collaborative filtering approach based on the k-nearest neigh-
bors (kNN) [402]. We set the size of the neighborhood & to 30 and use cosine
similarity to measure the similarity between items, following the suggestion of Sar-
war et al [402]. Herlocker et al. have also found that generally, a neighborhood
size of 20 to 50 seems reasonable for real-world settings [188].

There are a few parameters to be empirically decided for the DeepWalk algorithm for
learning the latent features. In a preliminary study we found that the following setting
works reasonably well: dimension of the latent representation, which controls the model
complexity—64, number of walks and the walk length, which control the number of
sampling pairs for the modeling stage—16 and 64 respectively, the window size, which
determines the reachable vertices—4. We use this parameter setting throughout the
following experiments, for both u2t and u2t2h.

The results of the conducted analysis are listed in Table 7.4. As can be seen, incorporating
latent features increases the quality of the ranking compared to the baseline methods.
The random baseline reaches an average MRR of 0.29 for both data sets, while ranking
according to the popularity of tracks reaches a MRR of 0.73 (#NP560k data set) and
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Ranking Method #NP560k , #NP90k

Random 0.29 (0.26) | 0.29 (0.26)
Most popular tracks 0.73 (0.32) | 0.76 (0.30)
KNN 0.81 (0.33) | 0.79 (0.35)
user _track (u2t embedding; cos.) | 0.92 (0.21) | 0.81 (0.34)
user _track (u2t embedding; eucl.) | 0.83 (0.31) | 0.68 (0.41)

Table 7.4.: The mean reciprocal rank (MRR) achieved by different ranking methods
for POP_RND for both the #NP90k and #NP560k data sets (standard deviation in
parenthesis).

0.76 (#NP90k data set). Among the baselines, the item-item collaborative filtering
baseline (kNN) reaches a MRR 0.81 (#NP560k data set) and 0.79 (#NP90k data set),

respectively.

The use of latent representations of tracks and users increases the MRR to 0.92 for
#NP560k and 0.81 for #NP90k. Also, cosine similarly outperforms euclidean similarity.
Generally, from this first experiment we conclude that incorporating latent features in the
ranking process yields improved results compared to the evaluated baseline approaches.
Hence, this validates the effectiveness of the latent features for capturing a user’s general
musical preferences.

7.5.2. Experiment 2: Effectiveness of Affection and Hashtag Information

The goal of this experiment is to examine the benefit of incorporating hashtag and affec-
tive information into the ranking process. Ultimately, we aim to evaluate the performance
of the individual proposed ranking strategies in a context-aware ranking task. Therefore,
we consider both the POP _RND and POP _USER task in this experiment.

Table 7.5 depicts the results of this evaluation for the #NP560k data set and Table 7.6
presents the results for the #NP90k data set. As our experiments showed that cosine
similarity consistently outperforms Euclidean similarity by a small margin, we only list
the results of cosine similarity. For POP RND, we see that the best results are obtained
by the user track ranking method, achieving a MRR of 0.92 (u2t embedding; #NP560k
data set) and 0.83 (u2t2h embedding; #NP90k data set). For the #NP90k data set,
usertags track also reaches a MRR of 0.83. As for the user track ranking method, we
do not observe substantial differences between ranking approaches incorporating hash-
tags (i.e., u2t2h) and those not incorporating hashtags (i.e., u2t) in the latent features
representation. As for the other ranking approaches, we observe that usersent tracksent,
user _tracktags, tweettags tracktags and usertags tracktags reach lower MRR values.
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Figure 7.3.: Boxplot of MRR achieved by different ranking methods using POP_USER
(u2t2h embedding; black square marks mean value across all evaluations).

Notably, the tweetsent tracksent ranking method, which solely relies on the sentiment
scores associated with the tracks to be ranked and hashtags the user made use of in the
current input tweet, achieves 0.81 (#NP560k data set) and 0.70 (#NP90k data set).

In contrast, for POP _USER, we can see from Tables 7.5 and 7.6 that the sentiment
ranking method tweetsent tracksent outperforms all other methods, achieving the high-
est MRRs of 0.82 (#NP560k data set) and 0.71 (#NP90k data set), respectively. The
results support our hypothesis that sentiment hashtags and embeddings incorporating
hashtags allow for better capturing a user’s context and hence, exploiting this informa-
tion for ranking track candidates. For a better comparison, we also provide a boxplot
of the MRR results for both data sets in Figure 7.3. The other sentiment-based ranking
method, usersent tracksent, achieves a MRR of 0.68 and 0.53, respectively. Notably,
these methods do not use latent features. Methods utilizing “tracktags” for represent-
ing tracks, including user tracktags, tweettags tracktags, and usertags tracktags, also
perform well and reach a MRR around 0.80 for #NP560k and 0.60 for #NP90k. In con-
trast, the user track method performs poorly here, with a MRR below 0.30 across all
settings. In general, methods using “track” for representing tracks do not perform well.
These findings suggest that contextual affective information and in general, information
about the tags used to describe tweets or tracks is indeed exploited in this task. This is
also signaled by the fact that methods that incorporate latent features of hashtags and
sentiment information perform substantially better than the approach not incorporating
any affective or hashtag information.

In sum, we argue that ranking tracks the user has already listened to is more challenging
than ranking a set of randomly chosen tracks as these traditionally differ more. Therefore,
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Ranking method  Graph | POP_RND , POP_ USER

user _track u2t 0.92 (0.21) 0.28 (0.26)
user_track u2t2h | 0.91 (0.22) | 0.29 (0.26)
user _tracktags u2t2h | 0.88 (0.26) 0.80 (0.32)
usertags_track u2t2h | 0.89 (0.24) 0.29 (0.26)
usertags tracktags — u2t2h | 0.84 (0.29) 0.78 (0.32)
tweettags track u2t2h | 0.89 (0.23) 0.32 (0.29)
tweettags tracktags u2t2h | 0.86 (0.27) 0.80 (0.31)
tweetsent _tracksent — 0.81 (0.34) 0.82 (0.30)
usersent tracksent = — 0.39 (0.30) 0.68 (0.32)

Table 7.5.: The MRR achieved by different ranking methods, using cosine similarity for
the #NP560k data set (standard deviation in parenthesis).

Ranking method  Graph | POP_RND , POP_ USER

user_track 2t 0.81 (0.34) | 0.22 (0.22)
user _track u2t2h | 0.83 (0.32) 0.22 (0.21)
user _tracktags u2t2h | 0.79 (0.33) 0.56 (0.37)
usertags track u2t2h | 0.83 (0.31) 0.25 (0.23)
usertags tracktags  u2t2h | 0.74 (0.34) 0.59 (0.37)
tweettags track u2t2h | 0.84 (0.30) 0.36 (0.33)
tweettags tracktags u2t2h | 0.78 (0.34) 0.65 (0.37)
tweetsent tracksent — 0.70 (0.37) 0.71 (0.35)
usersent _tracksent =~ — 0.42 (0.32) 0.53 (0.32)

Table 7.6.: The MRR achieved by different ranking methods, using cosine similarity for
the #NP90k data set (standard deviation in parenthesis).

we consider this result as promising. Our experiments also show that both data sets (and
hence, splitting methods regarding training and test data) deliver robust and consistent
results.

7.5.3. Experiment 3: Effectiveness of Individual Sentiment Lexica

In this experiment we aim to get a deeper understanding for the performance of different
sentiment detection approaches or rather, lexica. Therefore, we now focus on the perfor-
mance of the sentiment-aware ranking methods and firstly evaluate the performance of
single sentiment lexica.
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Dictionary Fallback POP_ RND POP_USER
AFINN None 0.79 (0.34) | 0.79 (0.34)
Opinion Lexicon None 0.81 (0.32) 0.80 (0.33)
SentiStrength None 0.85 (0.29) 0.85 (0.27)
Vader None 0.87 (0.25) | 0.85 (0.29)
AFINN user _track | 0.85 (0.29) 0.81 (0.31)
Opinion Lexicon user track | 0.86 (0.28) 0.82 (0.31)
SentiStrength user _track | 0.86 (0.28) 0.84 (0.29)
Vader user _track | 0.89 (0.24) 0.85 (0.28)

Table 7.7.: Performance (in MRR) of different sentiment dictionaries for tweet-
sent _tracksent in the #NP560 data set (standard deviation in parenthesis).

The usage of sentiment dictionaries for the detection of sentiment in a text is naturally
limited by the coverage of the given sentiment dictionary (cf. Section 7.4.1 regarding the
coverage of the sentiment lexica used). This limited coverage consequently constrains the
number of affective hashtags detectable using any single dictionary which further limits
the number of tracks which can be actually assigned with a sentiment score. Thus, only
a limited number of tracks can be compared in this regard.

To compare the different lexica nonetheless, we propose the following method. For those
tracks, users and tweets for which we can compute a sentiment score using the given
dictionary, we rely on the best performing ranking method tweetsent tracksent as eval-
uated in the previous experiments. However, for the remaining tracks, users and tweets
with no sentiment scores, we employ a fallback method. Here we distinguish two cases:
i) if we cannot detect a sentiment score for either the user or the tweet, we use the
fallback method for all the tracks to be ranked; ii) if we cannot detect a sentiment for
a track (or a set thereof), we compute the similarity of user (or tweet; depending on
the ranking method) and the track using the fallback method. As for the fallback meth-
ods, we chose to use and evaluate the best-performing ranking methods not relying on
affective information for each task. Hence, we evaluate user track for POP_RND and
tweettags tracktags for POP _USER as fallback methods, respectively and utilize the
average sentiment score detected for a given tweet or track for the comparison.

Tables 7.7 and 7.8 show the results for the #NP560 and #NP90k data set, respectively.
Here, we consider POP _RND as a special case as the best performing method is not
sentiment-based and the user track fallback method performs better than the sentiment-
aware ranking methods. Hence, the usage of such a fallback method naturally increases
the performance of the evaluation where the degree of improvement depends on the cov-
erage of the dictionary used. However, the goal of this evaluation is to evaluate the
individual dictionaries and therefore, we still list the results. To provide a complete pic-
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Dictionary  Fallback POP_ RND POP_USER
AFINN None 0.68 (0.39) | 0.68 (0.37)
Opinion Lex. None 0.71 (0.38) | 0.69 (0.37)
SentiStrength None 0.72 (0.36) | 0.73 (0.35)
Vader None 0.77 (0.33) | 0.77(0.34)
AFINN tweettags tracktags | 0.77 (0.35) 0.68 (0.36)
Opinion Lex. tweettags tracktags | 0.79 (0.33) 0.68 (0.36)
SentiStrength tweettags tracktags | 0.76 (0.35) 0.73 (0.34)
Vader tweettags tracktags | 0.80 (0.22) 0.74 (0.34)

Table 7.8.: Performance (in MRR) of different sentiment dictionaries for tweet-
sent_tracksent in the #NP90 data set (standard deviation in parenthesis).

ture of the results, we also list the performance of the individual sentiment dictionaries
when no fallback method is used (i.e., ‘Fallback None’). As the table shows, the best re-
sults (by a slight margin) are obtained using the user _track fallback method. Examining
the dictionaries used, we do observe slight differences but note that Vader performs the
best. As for POP USER, we observe that in this case, using no fallback method per-
forms slightly better than using the fallback method as our experiments in Section 7.5.2
already showed that tweetsent tracksent is the best performing ranking strategy (again,
by a moderate margin). As for the individual dictionaries, we find that the differences in
regards to the MRR are rather moderate with Vader again performing the best for both
the user- and the tweet-based sentiment ranking.
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Figure 7.4.: Cumulative ranking distribution of different methods for the #NP560k data
set.
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7.6. Discussion

We further discuss the evaluation results in this section.

In the first experiment we showed that representing tweets, tracks and users by latent
features computed by the DeepWalk algorithm and using similarities between these for
ranking tracks achieves comparable results as traditional ranking methods. Therefore,
we conclude that these latent representations are able to capture users’ general listen-
ing preferences and that those can be used for ranking tracks in a recommendation or
retrieval scenario. Our experiment comparing the performance of user track learned
from u2t and u2t2h sees marginal differences in terms of MRR, for either POP _RND or
POP_USER. In this scenario, these findings signal that hashtag information integrated
in the computation of latent features does hardly influence the resulting latent feature
representations for users and tracks.

However, using u2t2h as the underlying graph permits learning the latent feature rep-
resentations for hashtags, which is useful for the POP USER task. That is, for the
context-aware ranking task, hashtags (providing contextual information) naturally con-
tribute to an improved ranking. Analyzing the results of the different proposed ranking
methods in our second experiment, we find that using the latent representations of hash-
tags that are used to tag tracks (i.e. “tracktags”) seem to be more representative of
a track than using solely the latent representation of the track itself (i.e. “track”) for
POP_USER. We can observe that tracktags performs substantially better over all con-
figurations. However, this does not hold for POP _RND. These findings suggest that
for POP_RND, the latent representation of a track seems more suitable than using the
hashtags annotating a track. This shows that for capturing a user’s general listening
preferences, utilizing the latent representations of users and tracks are sufficient for com-
puting a suitable ranking.

Similarly, users can either be represented by the user’s latent feature representation
(“user”) or by the latent representations of the hashtags the user made use of (“usertags”).
However, we encounter mild differences between the performance of these two represen-

tations for either POP_RND or POP _USER. Hence, we conclude that the differences
of different representations for users are hardly distinctive.

Among the two sentiment-based ranking methods, we find that using the sentiment of
the input tweet (“tweetsent”) performs better for both POP RND and POP_USER.
These results suggest that using the sentiment expressed by the user in the current tweet
captures the current affective context better than using the average sentiment a user
has previously expressed through hashtags. This can also be seen in Figure 7.4, which
plots the cumulative ranking function for the random baseline and the ranking methods
user_ track, user tracktags, tweetsent tracksent (utilizing the average score across all
sentiment lexica). For POP_RND we observe that user track provides superior results
across all ranks incorporated. In contrast, for POP _USER we observe that user track
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shows behavior highly similar to the random ranking approach (those two lines actually
overlap heavily), whereas tweetsent _tracksent and user _tracktags perform substantially
better across all ranks.

From these experiments we observe that choosing a suitable representation for tracks,
users and tweets is crucial for the quality of the ranking. We find that for POP _RND,
comparing the latent representations of users and tracks is sufficient to provide high-
quality ranking of tracks. However, the POP _USER experiment showed that this does
not suffice when the ranking task gets more personal and complex. This experiment
showed that ranking based on contextual affective information performs best. Particu-
larly, the tweetsent tracksent ranking method outperformed the other methods. From
these findings we conclude that while for the POP _RND task the latent representations
did capture the user’s preference well, for the POP _USER task the sentiment did capture
the user’s musical interest better.

The third experiment aimed to evaluate the performance of the individual sentiment
lexica and hence, their suitability for this task. We observed that Vader performed best
across all evaluations. However, we have to note that the differences are rather moderate.
Given that Vader performs similar to the other dictionaries in terms of coverage, we lead
this back to the fact that Vader is a particularly geared towards social media texts.

Our evaluation design proposes a fallback method to compensate for those tweets, users
and tracks which could not be assigned with a sentiment score using the given dictio-
nary. This naturally implies that the choice of the fallback ranking method is vital. We
propose to evaluate the best performing algorithm not considering sentiment data. For
POP_RND, the fallback methods individually perform better than the sentiment-based
ranking methods. Thus, an improvement of the results when introducing user track is
an obvious result. The tweettags tracktags ranking method is also able to improve the
results, though to a lower degree. As already laid out, we consider the POP USER
task as the more difficult and personal task. For this evaluation, results worsened by
the fallback methods as expected, since these methods did not perform as well as the
sentiment-based methods in the previous experiments. From these results we reason that
implementing a fallback method is a good choice as it provides means for compensating
the lack of coverage. Also, we conclude that choosing the fallback method according to
the complexity and degree of how personal the ranking task is, seems plausible. As for
the choice of sentiment dictionaries, we propose to employ the union of multiple dictio-
naries to increase coverage. While our experiments show that minor improvements for
single dictionaries, we argue that in this case, coverage should be prioritized as it allows
for a higher applicability of the sentiment-based ranking, which has shown to perform
better.

102



7. Leveraging Affective Hashtags for Ranking Music Recommendations

7.7. Background and Related Work

Before concluding the paper, we give a brief review of related work in psychology and
recommender systems, to put this work in the context of the literature.

7.7.1. Psychological Studies on Emotion Regulation

Emotion regulation is important for the performance and well-being of mankind [171].
It is widely accepted that emotions play a major role in driving our decisions. Beneficial
emotion regulation strategies help people to stay calm under stress, handle failures in
a mindful and positive way, etc. Due to its importance, emotion regulation has been
recognized as one of the fastest growing areas within the field of psychology [257, 453].

Emotion regulation has also been identified as an essential reason for musical engagement
[179, 227, 472]. Boer and Fischer [54] found that emotion regulation represents the most
important personal use of music across human subjects from four cultural backgrounds.
Goethem and Sloboda [472] found that music listening is the second-most used tactic for

emotion regulation, just behind “talking with friends”.*

Saarikallio et al. [392] found that a person’s general tendency to emotionally appreciate,
enjoy and react to music (i.e., emotional reactivity to music) is positively correlated with
the tendency to use music for emotion regulation (i.e., emotional use of music). Being
familiar with a music piece increases a person’s emotional use of that piece in daily life
[392]. Moreover, informal engagement through listening, but not formal musical train-
ing, correlate with heightened emotional use of music. Saarikallio also argued that music
should not simply be considered as one emotion regulation mechanism, but rather as a
tool for realizing several different emotion regulation strategies, including positive mood
maintenance, relaxation and revival, induction of strong emotions, diverting away from
worries, discharging negative emotion, mentally working through emotion preoccupa-
tions, and finding solace and understanding [393]. Individual differences in the use of
these strategies have also been noted: e.g., some prefer emotional reinforcement of cur-
rent experiences, while others prefer to distract themselves and change emotions [391,
452].

While many psychological studies were conducted in the lab with small to medium sample
size, what we investigate here is the relationship between a user’s self-report emotional
state and the self-report musical preference through Twitter at scale and “in the field.”
Moreover, a computational approach that investigates how to represent the affective
information of users and music using machine learning and sentiment detection techniques
is taken. Although our study may also lead to psychological insights, the focus is more on
the engineering side, targeting at applications such as affective music recommendation.

SRS YRS

“The other tactics considered in their study include “exercising”, “reading a book/magazine”, “watching
TV /movie”, among others [472].
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There have been psychological evidences showing that the emotional state of users affects
musical preference. For example, depressed patients expressed an intensified response to
sad-sounding music when compared to healthy controls [53]. Moreover, such patients
evaluated negative-valence music as significantly more sad and angry than healthy con-
trols did [366]. However, according to Gross [171], people do not always attempt to stay
away from negative emotions. Reasons for up-regulating negative emotions include pro-
moting a focused, analytic mindset; fostering an emphatic stance; and influencing others’
actions.

An interesting research direction is therefore to use Twitter data to computationally
study the effect of music in emotion regulation at scale using a longitudinal approach.
This requires tracking specific users’ #nowplaying tweets and emotional states over time,
which to our knowledge has not been attempted before. We leave this as a future work.

Finally, we remark that Hargreaves and North [179] proposed that music has three types
of psychological functions: cognitive, emotional, and social functions. The focus of this
paper is on the emotional functions of music, neglecting the possible social functions
manifested in the Twitter data.

7.7.2. Affective Multimedia Recommendation

Contextual factors relevant to music recommendation may include the time, location and
device of music listening, user’s present emotional state and activity, etc. [243|. While
it is relatively easier to infer some of these factors from sensors such as clocks, GPS and
accelerometers [411, 481, 494|, accessing the emotional state of a user is more difficult.
As users may not always be willing to report their emotions, computational methods
for user emotion prediction from facial expressions, prosody cues, text, and physiological
signals have been widely studied [72, 288, 514].

With 40K blog posts collected from the social blogging website LiveJournal®, Yang and
Liu [493] investigated the relationship between the emotional state of a user and the
emotion of preferred music pieces. Similar to the Twitter data set we use in this paper,
the LiveJournal data set they employed also contains the self-report emotional states and
self-report preferred music pieces [290]. Yang and Liu [493| used audio signal processing
and machine learning techniques to recognize the emotion of the music [491] and then
correlated the emotion in music with the emotional state of the users, finding that users
do prefer music of different emotions in different emotional states. Following this work,
Chen et al. [88] showed that considering the emotional state of a user indeed improves
the quality of music recommendation, comparing to conventional collaborative filtering
approaches that do not use affective information. This article extends from these two
prior articles in that we use a larger data set and more sentiment detection methods.

Shttp://www.livejournal.com
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Ferwerda and Schedl [146] proposed the idea of exploiting both the personality and
emotional state of a user for music recommendation, but did not actually implement
such a system. Rosa et al. [387] built a system that recommends music according to the
emotional states inferred from user-generated text by sentiment detection, but the system
was evaluated using a small-scale data set collected from a crowdsourcing platform, not
from social media websites. Deng et al. [117] assumed that the emotional state of a
user can be determined by the emotions of the music pieces the user just listened to.
There are some other affective music recommender systems proposed in the literature,
but many of them require users to indicate their present emotional states or the desired
emotions of the music [24, 37, 178|.

Affective movie recommendation has also been studied in recent years, using mainly the
users’ self-report emotional states [434, 464, 522]. Although it might be possible to crawl
movie preference data from social platforms such as Twitter, few attempts have been
made thus far.

7.8. Conclusion and Future Work

In this paper, we have proposed a set of novel methods for ranking music recommendation
candidates. In particular, we proposed to represent the building blocks (users, tracks,
affective hashtags) by their latent features computed by a network embedding algorithm
called DeepWalk. Based on these latent feature representations, we proposed a number of
ranking methods. Furthermore, we proposed two ranking methods that are solely based
on sentiment scores. Our evaluation using #nowplaying tweets showed that the use of
latent features to represent users, tracks and hashtags contributes to better ranking. The
evaluation procedure distinguished two tasks of increasing complexity: i) ranking a set
of randomly picked tracks and ii) ranking a set of tracks the target user has already
listened to. We find that for the first task, comparing the latent representations of users
and tracks (regardless of used hashtags or affective information) performs best and this
confirms our hypothesis that applying an embedding technique effectively captures the
general listening preferences of users. However, for the second, context-aware ranking
task, using solely affective information extracted from hashtags leads to the best result.
This shows that the more personal and complex a ranking task gets, the higher the
influence and significance of affective and hence, context information is. Finally, an
evaluation of the different sentiment lexica showed that the differences in performance of
the individual lexica is rather moderate. While Vader achieves the best results, we argue
that combining several dictionaries or implementing fallback methods results in a more
robust approach.

Future work includes incorporating more sophisticated sentiment detection approaches

both regarding the underlying dictionaries as well as the computation of the sentiment
scores. In a first step, we aim to further evaluate different aggregation methods for tracks
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that are tagged with multiple tags with divergent sentiment scores (e.g., #happysad).
Also, we aim to experiment with probabilistic models for representing a user’s or track’s
sentiment values (e.g., using Gaussian Mixture Models [479)]).

Modeling affective information in a multidimensional model such as the valence-arousal
space [480, 491]| is worth exploring. Also, we aim to extend the unsupervised sentiment-
detection approach (based on sentiment dictionaries) to a supervised learning approach
that permits cross-lingual sentiment detection [29]. Lastly, the computation of latent fea-
tures based on the proposed graph needs to be investigated in more detail. Particularly,
we aim to investigate the influence and performance of different embedding strategies for
the computation of latent representations. Ultimately, we intend the development and
evaluation of real-world applications for music recommendation and music-based emotion
regulation based on our findings.
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Abstract

Integrating information about the listener’s cultural background when building music
recommender systems has recently been identified as a means to improve recommendation
quality. In this article, we, therefore, propose a novel approach to jointly model users by
their musical preferences and cultural backgrounds. We describe the musical preferences of
users by the acoustic features of the songs the users have listened to and characterize the
cultural background of users by culture-related socio-economic features that we infer from
the user’s country. To evaluate the impact of the proposed user model on recommendation
quality, we integrate the model into a culture-aware recommender system. By analyzing
a dataset comprising approximately 400 million listening events of about 55,000 users
from 36 countries, we show that incorporating both acoustic information of the tracks a
user has listened to as well as the cultural background of users in the form of a music-
cultural user model contributes to improved recommendation performance. Furthermore,
we provide a systematic analysis of the influence of different features on the quality of
the provided culture-aware track recommendations. We find that considering acoustic
features that model the characteristics of tracks and a user’s musical preferences have
the highest impact on recommendation performance. However, adding socio-economic
features allows further improving the recommendation quality. In addition, we identify
interesting correlations between acoustic characteristics of music preferences and cultural
features of populations at the country level.
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8.1. Introduction

Recent advances in recommender systems and music information retrieval have shown
that contextual information is vital for highly personalized results (e.g., [62, 356, 481]).
In this scope, context can be defined as “conditions or circumstances which affect some
thing” [11, 232|, where, e.g., environment-related contextual information may include
location, time or weather [231]. Consequently, the user’s listening context can be defined
as the user’s context during listening to music. To this end, the geographic location of
a user is often exploited as one basic notion of context. Leveraging GPS coordinates to
model similarity between listeners, which is key to build recommender systems, results
in location-aware systems, which are however agnostic to cultural characteristics and the
cultural background of users. In the scope of this article, we define the cultural back-
ground of users as a set of attributes that allow for describing the culture the user is
embedded in, including social or economic aspects, as well as, e.g., cultural practices,
values, and behavior. However, location alone does not necessarily serve as a good indi-
cator for the cultural background of a user as geographically close users might have a very
different cultural background. A user’s cultural background may also not coincide with
political borders [363]. Notably, the cultural background of a user was identified already
in [421] as a possibly relevant aspect to improve recommender systems. We hence argue
that modeling users based on musical properties of the songs they listen to (approxi-
mating their musical preference) on the one hand and the user’s cultural background
on the other contributes to capturing music-cultural listening patterns. These patterns
particularly describe the complex interrelation between users, their cultural background,
and the characteristics of the music they listen to. In this article, we propose a novel
music-cultural user modeling approach to exploit such listening patterns for recommender
systems by integrating information about (i) the acoustic qualities of the music users have
listened to and (ii) culture-specific information derived from the users’ location/country
to describe the user’s likely cultural background.

Leveraging a standardized collection of almost one billion user-generated listening events,
we evaluate the proposed user model.! By exploiting music-cultural listening patterns
captured by the proposed user model in a recommender system, we show that the re-
sulting culture-aware music recommendations are more accurate than those provided by
a recommender agnostic to cultural information. Particularly, we find that capturing a
user’s individual music taste by the high-level audio features of the tracks the user has lis-
tened to and adding Hofstede’s cultural dimensions [192] as well as data from the World
Happiness Report (WHR) [187] as a description of the cultural (and socio-economic)
background of the user provides the best recommendation results, in terms of accuarcy
and error measures.

The remainder of the article is organized as follows. Section 8.2 briefly reviews related
work on context- and culture-aware music recommendation. The dataset we use, a pro-
cessed version of the LFM-1b dataset [408|, is presented in Section 8.3. Section 8.4

LA listening event is defined as a quintuple <user, artist, album, track, timestamp>.
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provides details on (i) our methods for user modeling according to musical preferences
and cultural aspects, and (ii) our proposed culture-aware recommender system. The
experiments we conducted to evaluate the user models and recommender system ap-
proaches are explained in Section 8.5. We present and discuss the results obtained in
Section 8.6. To gain more insights into the overall and country-specific patterns of acous-
tic music preferences, Section 8.7 presents results of an additional study on differences in
acoustic preferences between countries and on correlations between cultural and musical
features. The paper is rounded off by a summary and outlook to follow-up research in
Section 8.8.

8.2. Related Work

In music recommender systems, unlike for instance in movie recommendation, content-
based approaches have been the dominant focus of research for a long time [244]. Music
content is, in this case, either incorporated into the recommendation algorithm in the
form of hand-crafted acoustic features or—more recently—by automatic feature extrac-
tion from the raw audio signal using deep neural networks. Examples of the former
include a rich set of features that have been proposed in the past two decades of mu-
sic information retrieval research, and ranges from Mel frequency cepstral coefficients
(MFCCs), e.g., [296], to semantic descriptors of acoustic properties, e.g., [321, 467|. For
an overview, consider, for instance, |75, 242|. Deep learning-based approaches to au-
tomatic feature learning for content-based music recommendation include convolutional
neural networks (CNN) and recurrent neural networks (RNN), in particular its variants
long short-time memory (LSTM) and gated recurrent units (GRU). For a more detailed
review of deep learning approaches in music recommendation, please consider Schedl
[405].

Nowadays, it has become widely accepted that incorporating contextual information into
recommender systems contributes to improved recommendations [11]. Particularly for
music recommender systems, studies showed that users often seek for music that matches
their current situation, and hence context (i.e., occasion, event or emotional states) [241,
275]. In the scope of music recommender systems, [232] distinguish environment-related
context (location, time or weather), user-related context (activity, demographic informa-
tion or emotional state of the user), and multimedia context (text or pictures the user
is currently reading or looking at). For our study, the environment-related context of a
user is of particular relevance as we aim to leverage both the musical preferences and
cultural background of users for improving track recommendations.

[420] performed a study on the contribution of geospatial information to the perfor-
mance of artist recommender systems. They conclude that if users listen to various
different artists, the integration of geospatial information is beneficial. In [422], the au-
thors approximate the cultural distance of users by the country or continents a user is
located in and show that this is beneficial for users particularly in the U.S. and Russia.
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Furthermore, there are several approaches that exploit places of interest as contextual
information, where the idea is to recommend music that suits the environment—in an
emotional or cultural sense |63, 234]. Rich sensory devices such as smart phones allow
mapping a certain location to a certain activity that can be exploited for personalized
location-based music recommendations, depending on the user’s inferred activity [481].
[33] propose a context-aware music recommender system for car drivers, where a set of
diverse contextual factors are incorporated (e.g., driving style, traffic conditions, weather
or road type). [27] propose the Foxtrot system, which allows users to tag music with
geolocations. Based on this information, users can be provided with location-specific
music recommendations. [96] model the listener’s short-term music needs, location, and
overall popularity to create personalized music recommendations. [198| propose a music
recommender system that integrates track genre, release year, freshness, and temporal
aspects.

As for cultural aspects in the broader field of music information retrieval, [147] found that
a user’s cultural background (modeled by Hofstede’s cultural dimensions [192]) influences
how diverse the musical preferences of users are. Particularly, they found that highly
individualist countries and countries that are flexible, pragmatic, and eager to adapt to
changes listen to more diverse genres. [419] also performed a study on whether cultural
similarity between countries (described by Hofstede’s cultural dimensions and the Quality
of Government (QoG) dataset) is reflected in music taste (described by tags annotating
music tracks). They found medium correlations of music taste and several cultural and
socio-economic factors. Notably, this evaluation is based on the LFM-1b dataset, which
is also utilized in the experiments conducted in this study. Furthermore, Liu et al. have
uncovered similarities between countries based on cultural and socio-economic aspects
on the artist level and on the album level [291, 292].

[363] clustered users based on their individual musical preferences and their cultural
characteristics. Relying on density-based spatial clustering, they find nine clusters that
describe similar users regarding both their musical preference and cultural background.
The cultural background of users was described by the World Happiness Report [187]
and the authors found that incorporating cultural information allows for more precise
user descriptions compared to relying on geographic information only. However, this
evaluation did not target recommender systems and was done on a substantially smaller
dataset.

We are not aware of any work exploiting the cultural background of users for the com-
putation of context-aware music recommendations and hence locate a research gap here.
In this paper, we show that utilizing the cultural background of users together with their
general musical preference contributes to improved recommendation quality.
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8.3. Data

In this section, we present the data utilized for performing our analyses and experi-
ments.

Item Value
Listening events 394,944,868
Users 55,149
Tracks distinct 3,478,399
Min. LE per user 1
@1 LE per user 1,442
Median LE per user 5,667
@3 LE per user 9,738
Max. LE per user 399,210
Avg. LE per User 7,161.41 (£ 10,326.91)

Avg. Users per Country  1,155.93 (£ 1,894.96)

Table 8.1.: Statistics of the dataset utilized (LE=listening event).

For our analyses, we require a dataset that contains a substantial number of listen-
ing histories of users as well as country information about these users. There are in-
deed a number of datasets containing listening histories: The Million Musical Tweets
Dataset [183] and the MusicMicro dataset [407] come with contextual information re-
lated to time and location. The musical listening histories dataset [475], the Yahoo!
Music ratings dataset [127] and the #nowplaying dataset [509] contain a substantial
number of users, items also including timestamps of LEs; however, no contextual infor-
mation regarding the user’s country is given. Hence, we base our investigations on the
LFM-1b dataset [408], which contains more than one billion listening events created by
users of the online music platform Last.fm,?> where music listeners can share information
about their listening behavior. The LFM-1b dataset has been created in the following
way using various endpoints of the Last.fm API [406]: First, the top artists labeled by
any of the 250 top user-generated tags used on Last.fm were retrieved. Then, the top
fans of these artists were fetched, resulting in about 465,000 users. Listening histories
(i.e., each user’s set of listening events) of a randomly chosen subset of 120,322 users
were subsequently downloaded. The creation time of the listening events cover the time
span between January 2005 and August 2014.

Since we aim to model music-cultural preferences jointly by individual musical preference
and the cultural background of users, we require the data to contain information about
the location of the user. For 45.87% of all users within the LFM-1b dataset, country
information about the user is available. Therefore, we restrain the dataset to those users

’https://www.last.fm
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(and their tracks) for whom we are able to obtain country information. This provides
us with a dataset comprising 55,191 users, who have listened to a total of 26,022,625
distinct tracks, which are captured by a total of 807,890,921 listening events.

Besides the information contained in the LFM-1b dataset, we also require information
about the tracks the users listened to (cf. Section 8.4.1). Particularly, we are interested
in content features that are able to describe a given track. Therefore, we rely on the
Spotify API to gather content-based audio features, as described in Section 8.4.1, for
each track. For all listening events of users for whom we can obtain country information,
we search for the <track, artist, album> triples extracted from the LFM-1b dataset
using the Spotify search API? to gather the Spotify URI of each track (i.e., we provide
all three parts in a conjunctive query). This URI is subsequently used to query the
audio features API,* which returns the set of audio features describing the contents of a
given track (cf. Section 8.4.1), which allowed gathering 4,326,809 Spotify URIs. For the
remainder of the tracks, the Spotify API is not able to correctly resolve the triples to
a track. We attribute this to two factors: either the searched track is not provided by
Spotify or the track, artist, and album information cannot be matched to a Spotify track
URI unambiguously. Also, the Spotify API does not provide all features for all tracks
and hence, we remove those tracks for which the API does not provide a full set of audio
features from the dataset. Employing this procedure, we are able to acquire the full set
of audio features for a total of 3,478,399 tracks. Notably, these 13.36% of the distinct
tracks for which we can obtain audio features are able to capture 48.89% of all listening
events (i.e., the tracks listened to by users).

The remaining tracks and respective listening events are excluded from the dataset. This
eventually results in a dataset of 55,149 users, 394,944,868 listening events and 3,478,399
distinct tracks. Table 8.1 depicts the main characteristics of the dataset underlying
our analyses.” As can be seen, the average number of listening events per user is 7,161,
which we consider a substantial number that is able to capture a user’s individual musical
preferences well. Furthermore, the average number of users per country is 1,156. Along
the lines of [147|, we restrain the dataset to countries with more than 200 users to ensure
that countries are well-characterized and results are valid and representative (at least
of a typical music streaming community such as the one at Last.fm). Table 8.2 depicts
the number of users per country for all countries with more than 200 users within our
dataset. In total, the cleaned dataset features users from 36 different countries. Note that
countries in this article are abbreviated using their ISO 3166 2-digit country code.’

3https://developer.spotify.com/web-api/search-item/

4h‘c'cps ://developer.spotify.com/web-api/get-several-audio-features/

5To foster further research, we provide the dataset at https://doi.org/10.5281/zenodo.3477842.
Shttps://www.iso.org/iso-3166-country-codes.html
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Abbrv. Country Users
US United States 10,251
RU Russian Federation 5,021
DE Germany 4,576
UK United Kingdom 4,533
PL Poland 4,403
BR Brazil 3,882
FI Finland 1,409
NL Netherlands 1,375
ES Spain 1,242
SE Sweden 1,230
UA Ukraine 1,140
CA Canada 1,077
FR France 1,055
AU Australia 976
IT Italy 973
JP Japan 798
NO Norway 750
MX Mexico 705
CZ Czechia 632
BY Belarus 558
BE Belgium 513
1D Indonesia 484
TR Turkey 478
CL Chile 425
HR Croatia 372
PT Portugal 291
AR Argentina 282
CH Switzerland 277
AT Austria 276
HU Hungary 272
DK Denmark 271
RS Serbia 253
RO Romania 237
BG Bulgaria 236
1IE Ireland 219
LT Lithuania 202

Table 8.2.: Number of users per country for countries with more than 200 users. We use
ISO 3166 2-digit country codes to abbreviate country names.
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8.4. Methods

In the following, we detail the proposed approach for leveraging individual and cultural
listening patterns for the computation of track recommendations based on the underlying
dataset (as described in Section 8.3). We first present our user modeling approach (for in-
dividual and cultural listening patterns) and secondly present the proposed music-cultural
user model. Subsequently, we show how we leverage this model for the computation of
track recommendations.

8.4.1. User Modeling: Musical Preferences

As for modeling individual musical preferences, we gather content-based audio features
for each of the tracks in the dataset by querying the Spotify API"™—following the lines
of, e.g., [21, 314, 362]. We make use of these Spotify high-level features for a number
of reasons: First, the LFM-1b dataset does not contain audio data that we could use
to extract audio features from. Second, our analyses aim at investigating the general
suitability of merging acoustic and cultural cues for music recommendation rather than
low-level feature engineering and hence, we rely on Spotify’s audio features as a compact
characterization of tracks. These content features are extracted from the audio signal of
a track and comprise:

1. Danceability describes how suitable a track is for dancing and is based “on a com-
bination of musical elements including tempo, rhythm stability, beat strength, and
overall regularity.”

2. Energy measures the perceived intensity and activity of a track. This feature is
based on the dynamic range, perceived loudness, timbre, onset rate and general
entropy of a track.

3. Speechiness detects presence of spoken words in a track. High speechiness values
indicate a high degree of spoken words (talk shows, audio book, etc.), whereas

medium to high values indicate e.g., rap music.

4. Acousticness measures the probability that the given track only contains acoustic
instruments.

5. Instrumentalness measures the probability that a track contains no vocals (i.e.,
instrumental).

6. Tempo quantifies the rate of the beat in beats per minute.

"A description of these features and the API can be found at https://developer.spotify.com/web-
api/get-several-audio-features/.

114


https://developer.spotify.com/web-api/get-several-audio-features/
https://developer.spotify.com/web-api/get-several-audio-features/

8. User Models for Culture-Aware Music Recommendation

7. Valence measures the “emotional positiveness” conveyed by a track (i.e., cheerful
and euphoric tracks reach high valence values).

8. Liveness captures the probability that the track was performed live (i.e., whether
an audience is present in the recording).

8.4.2. User Modeling: Cultural Aspects

As for the cultural dimension, we propose to model cultural aspects on a country level
and make use of two different resources: Hofstede’s cultural dimensions [192, 194]% and
the World Happiness Report? of 2016 [187], which we describe in the following.

A widely accepted instrument to describe cultures is Hofstede’s cultural dimensions
(HOF). This framework describes a nation’s culture and values by the following six
dimensions:

1. Power distance (PD) is defined as “the extent to which the less powerful members
of organizations and institutions (like the family) accept and expect that power is
distributed unequally” [187].

2. Individualism (IDV) captures the extent to which people are integrated into groups.
Societies with high scores possess only loose ties and the individual is considered
more important than the collective group.

3. Masculinity (MAS) assesses a preference in society for achievement, heroism, as-
sertiveness and material rewards for success. Low masculinity (femininity) signals
a preference for cooperation, modesty, caring for the weak and quality of life.

4. Uncertainty avoidance (UA) measures to which degree members of a society tolerate
ambiguity. Countries with a high score tend to rely on stiff codes, guidelines, and
laws. In contrast, lower scoring countries show more tolerance and acceptance of
differing thoughts.

5. Long-term orientation (LTO) measures the connection of the past with current
and future actions or challenges. Low-scoring societies tend to keep traditions and
norms and are suspicious of societal change, while high-scoring societies encourage
thrift and adaption.

8https://www.hofstede-insights.com/models/national-culture/
“http://worldhappiness.report/
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6. Indulgence (IND) captures the happiness of a country and “relatively free gratifi-
cation of basic and natural human drives related to enjoying life and having fun”.
In countries with low indulgence scores, gratification of needs is suppressed and
regulated by strict social norms.

In addition to Hofstede’s cultural dimensions, we complement our model with socio-
economic characteristics of countries. We capture these by figures extracted from the
World Happiness Report (WHR) [187]. [424] showed that cultural factors are directly
influenced by the subjective well-being of people. Therefore, we rely on the WHR as
it captures people’s cognitive and affective evaluations of their daily life and thus, their
subjective well-being [121] on a country level. The WHR provides the following set of
measures capturing the perceived happiness of countries:

1. Freedom measures the perceived freedom to make life choices.

2. Healthy life expectancy captures the healthy life expectancy at birth in a given
country.

3. Generosity specifies whether people in a country are willing to spend money on a
charity.

4. Social support states if people have people helping them if they need support (i.e.,
relatives or friends).

5. Trust measures the publicly perceived absence of corruption in government and
business.

6. Happiness quantifies the subjective and perceived happiness.

7. GDP is the real gross domestic product per capita.

8.4.3. Music-Cultural User Model

Based on the features we leverage to capture a user’s musical preferences (Section 8.4.1)
and a user’s cultural background (Section 8.4.2), we propose the following music-cultural
user model for computing culture-aware recommendations.

Generally, we characterize a user’s individual musical preferences and cultural back-
ground in a single feature vector. As for capturing a user’s individual musical preferences
based on the tracks listened to, we leverage the audio features of tracks as presented in
Section 8.4.1. Except for tempo, all of these features are given in the range of [0, 1]. For
tempo, we apply a linear min-max scaling to also represent it in the range of [0,1]. To
exclude tracks with audio features that distort a user’s aggregated musical features, we
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remove outlier tracks from the user’s listening history by applying the median absolute
deviation (MAD) outlier detection method [282]. We consider a feature value an outlier
if it is not within M +a- M AD, where M is the median of this particular feature across
all tracks of a user and MAD is the median absolute deviation of these values. As for
the choice of a, we set a strongly conservative threshold a = 3 as proposed by [282].
Hence, a value is considered an outlier if it is not within three MA Ds around the median.
Lastly, a track is considered as an outlier in the list of tracks of a particular user if one
of its features is considered an outlier and consequently removed from the user listening
history. For each of the features, we compute the average feature value and the standard
deviation across all tracks in the user’s listening history and add these average and stan-
dard deviation (SD) values to the user’s feature vector. We chose to add the standard
deviation of each of these features to mitigate the effects of averaging a large number of
features that potentially differ substantially.

For the approximation of the cultural background of users (or rather, the country they live
in) by socio-economic aspects, we rely on the variables of Hofstede’s cultural dimensions
and the World Happiness Report and extract these based on the user’s country infor-
mation. We add these variables to the feature vector to find cultural listening patterns
that reflect cultural similarity better than the geographic distance. For each of these
variables, we perform a linear min-max scaling such that all elements of the vectors are
within [0, 1] and concatenate it with the user vector.

8.4.4. Recommendation Computation

We model the computation of context-aware music recommendations based on the pro-
posed user model as a learning task for rating prediction, where we aim to learn the
probability P that a given user u has listened to a given track ¢t. To learn these prob-
abilities P(u,t) for all users and tracks, we rely on Gradient Boosting Decision Trees.
Particularly, we utilize the popular XGBoost system [93], a scalable end-to-end tree
boosting approach which has been shown highly suited for recommendation tasks [31,
340, 465]. Using XGBoost, we set the learning objective to logistic regression for binary
classification, which provides us with the desired probabilities. For the training phase,
we set the training objective to be the binary classification error rate (i.e., the number of
wrongly classified tracks in relation to all tracks classified, where tracks with a prediction
value larger than 0.5 are classified as relevant for the given user, and all other tracks are
considered irrelevant for the user).

Please note that we deliberately chose a classification-based recommendation approach
and refrained from utilizing more elaborate recommender approaches such as context-
aware matrix factorization [34] or tensor-based factorization approaches [235] as we aim
to focus on user modeling aspects in this paper. Hence, we chose to compare different
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user models based on a simple classification-based recommendation approach which also
allows us to get a deeper understanding of the contribution of individual features of the
user model (cf. Section 8.6).

For the classification task carried out, we require a rating for each track that allows us to
define whether a given track was listened to (and thus, considered relevant) for a given
user. Hence, we add a binary factor (rating) to the processed dataset: for each unique
<user, track> combination, the rating 7; ; is 1 if the user u; has listened to track ¢; at
least once. Please note that users and tracks may be represented by different models
as described in Section 8.5.1. Due to a lack of publicly available data, our dataset does
not contain any implicit feedback of users (i.e., skipping behavior, session durations, or
dwell times during browsing the catalog). This is why we cannot estimate any preference
towards an item a user has not listened to as proposed by [199]. Thus, we assume tracks
the user has not listened to (in the case of implicit data, all non-observed tracks) as
negative examples [199]. Even though there is a certain bias towards negative values as
some missing values might be positive, Pan, Zhou, Cao, Liu, Lukose, Scholz, and Yang
[341] found that this method for rating estimation works well. The rating r; ; for a given
user u; and given track ¢; can now be defined as stated in Equation 8.1.

r = { 1 if u; listened to ¢; (8.1)

0 otherwise

We train an XGBoost model that performs a binary classification on the relevance of
tracks for the given users. We extract the probabilities underlying the classification deci-
sion, which can be used to (i) perform a ranking of tracks by their probability of relevance
in the recommendation task which allows us to conduct a ranking-based evaluation of the
proposed models, and (ii) evaluate the predictive performance of the proposed models
by computing error metrics.

8.5. Experiment Design

This section reports on the experiments conducted for evaluating the previously described
culture-aware recommender system.

8.5.1. Experimental Setup

In the following, we first present the user models evaluated and describe the evaluation
method utilized for capturing the recommendation performance of the proposed user
model.
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Evaluation Strategy

To evaluate the performance of the proposed contextual user modeling in regard to
recommendation quality, we perform a per-user evaluation. Therefore, we use each user’s
listening history and perform a leave-k-out evaluation per user (also referred to as hold-
out evaluation) [64, 106], where we set k to 50 (as described later in this section).

The underlying dataset only provides items with positive feedback [199] (i.e., items that
have been listened to by the user) gathered via users’ listening histories. As the recom-
mendation task is transformed into a rating prediction task, we require the dataset to
also include negative examples. Therefore (and as described previously in Section 8.4.4),
for each user, we randomly add tracks the user did not interact with (i.e., tracks ¢; with
ri; = 0 for the given user u;) to the dataset until the listening history of each user in
both the training and test sets are filled with 50% relevant and 50% non-relevant items
for the user. We chose to oversample the positive class to avoid class imbalance and
hence, a bias towards the negative class (the number of tracks not listened to is much
larger than the number of tracks listened to, for all users).

As we aim to evaluate the benefit of adding cultural aspects in a track recommendation
scenario, we also need to characterize tracks. For our proposed model, we rely on the
acoustic features of each track and add these to the track vector. However, we also
need to assign cultural features to tracks to be able to match users of a certain culture
with tracks that are listened to by users with a similar cultural background. This is
particularly relevant for tracks in the negative class. Preliminary experiments showed
that we cannot assign randomly computed cultural features or the cultural features of
the current user to tracks as this causes the XGBoost model to learn that all tracks
with the user’s culture assigned belong to the positive class, whereas all tracks from any
other culture (i.e., culture information that is consistent across a number of users or
purely random culture information) belong to the negative class. Therefore, we propose
to assign the cultural features of the country in which the track is most popular to each
track. We argue that the track is most characteristic and representative for the country
in which the track is most popular. Therefore, we first compute the playcounts of each
track in each country within the dataset. Next, we normalize the playcount (PC) of
each track ¢t € T (i.e., the universe of tracks in the dataset) in each country c¢ by the

total amount of listening events of the country (i.e., we compute ELI% for each

JET J)
country ¢ and for each track t). This allows us to infer the country in which it accounts
for the highest share of listening events and hence, is most popular. We subsequently
assign the culture of this country to the track. For obtaining negative samples (tracks),
we randomly select a track from the dataset that the current user has not listened to
and again assign this track the cultural features of the country where the track is most

popular in.

Based on the dataset that now contains an equal amount of positive and negative sam-
ples for each user, we perform a leave-k-out evaluation strategy. Therefore, we have to
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compute a hold-out set of size k for each user: along the lines of previous research [139,
185], we randomly select 50 positive samples (tracks that the user has listened to) and
500 negative samples (tracks the user has not listened to). These 550 tracks form the
test set for each user, whereas the recommender system is trained on the remainder of
the dataset. Subsequently, we compute the predicted ratings for the tracks in the test
set as presented in Section 8.4.4, aiming to rank the 50 positive samples on top, whereas
the negative samples should be ranked on the bottom of the ranked list of recommenda-
tions.

Evaluated Models and Baselines

To assess the performance of each of the proposed user models, variations thereof and
two baseline approaches in terms of recommendation quality, we separately evaluate
these different user models and compare their performance. An overview of the evaluated
modeling approaches is depicted in Table 8.3. The evaluated models describe a user either
by the user’s individual music preferences described by the acoustic features of the tracks
the user listened to (U _AF), the user’s cultural/socio-economic background described
by Hofstede’s dimensions (U_HOF) and the World Happiness Report (U_WHR), or the
user identifier (U _ID). Similarly, we describe tracks by their acoustic features (T AF),
the culture they are embedded in (T _HOF and T WHR) or by their track identifier
(T _ID). Please note that we include the user and track identifiers in the respective
models as this allows us to extend and directly compare the approaches to a baseline
model (User + Track), that is only based on these two identifiers. As can be seen
from Table 8.3, we evaluate the music-cultural model (Music + Culture) as proposed in
Section 8.4.3. We also individually evaluate the performance of a model solely relying
on musical preferences of users and features of tracks (Music model), and analogously a
model that describes users and tracks by their cultural background (Culture model).

Furthermore, we investigate a set of baselines to compare our proposed models to. First,
we evaluate an approach that uses each user’s listening history and additionally, utilizes
the user’s country code (e.g., US for users from the United States) as contextual informa-
tion for both the user and the track (Country model). Here, we aim to evaluate whether
the country code may act as a proxy for cultural factors of users. Furthermore, we eval-
uate a context-agnostic baseline relying solely on the users’ listening histories and hence,
a model that solely relies on the user and track ids for classification (User + Track) in a
traditional collaborative filtering approach.

Evaluation Metrics

We model the context-aware recommendation of tracks as a rating prediction task, there-
fore we use the root mean squared error (RMSE) and mean absolute error (MAE) to
measure the prediction error. We compute the RMSE and MAE for each individual
user and consequently compute the average among all users. Furthermore, we are also
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Model User Features Track Features

Music + Culture U _ID, U AF, U WHR,U HOF T ID, T AF, T WHR, T HOF
Music U _ID, U_AF T ID, T _AF

Culture U _ID, U _WHR, U HOF T ID, T HOF, T WHR
Country U _ID, U Country ID T ID, T Country ID

User + Track U _ID T ID

Table 8.3.: Overview of evaluated models, where features prefixed with U describe a user
and features prefixed with T describe a track; the models on two last rows serve as
baselines.

interested in a decision-based evaluation [79] of our approach and therefore, compute
precision, recall, and the Fj-measure to assess the top-n accuracy [105], where n is the
number of top-ranked track recommendations that is evaluated. Therefore, we require
the set of computed recommendations to be ranked. Hence, we rank the track recom-
mendation candidates with respect to the probability that they belong to the positive
class in descending order and compute the top-n track recommendations. Next, we have
to transform the rating prediction task into a binary classification task [341] for deciding
whether a given track is relevant or not for a given user. For our experiments, we consider
all predicted probabilities P(u,i) > 0.5 as a predicted interaction and thus, we consider
these items as relevant, all others as irrelevant.!? For assessing the overall precision,
recall, and Fi-measure of the evaluated recommender systems, we compute the measures
for each individual user and compute the average among all users. For computing the
recall measure, all relevant items in the test set are considered, independent of the num-
ber of recommendations. Thus, there is a natural cap for recall, namely the number of
recommendations divided by the number of relevant items in the test set.

Regarding the number n of evaluated recommendations, we argue that exposing a user
to more than 10-20 tracks at a time might provoke choice overload and hence, is barely
meaningful. The problem of choice overload has been addressed by [57] who state that
user satisfaction is highest when presenting the user with top-5 to top-20 items—assuming
that the recommendation list contains a sufficient number of relevant items for the user.
Hence, we are particularly interested in the performance of the proposed recommendation
approaches for lower values of n. Furthermore, we argue that in the presented scenario,
precision is the more important measure to consider from a user perspective as it able
to capture the user’s effective utility of the provided recommendations better [46] and
hence, the practical value of the recommender system for the user. Thus, we argue that
particularly the precision@10 results are relevant for our evaluation. As for the tuning

10PJease note that this distinction between the positive and negative class is also utilized by XGBoost
for binary classification tasks based on logistic regression.
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of XGBoost parameters, we performed a preliminary cross-evaluation aiming to optimize
precision values for the proposed models and hence, set the maximum number of trees
to learn the models to 1,000. For all other parameters, we rely on the default settings.

8.6. Experimental Results and Discussion

In the following, we first present the findings of the top-n recommendation evaluation
task (Section 8.6.1), before presenting the evaluation of the underlying rating prediction
task in Section 8.6.2. Subsequently, we elaborate on the importance of individual features
of the proposed user model (Section 8.6.3) and discuss the limitations of the approach
(Section 8.6.4).

8.6.1. Top-n Recommendation Evaluation

Table 8.4 shows the results obtained by the evaluated user models (cf. Table 8.3), where
we consider the top-10 ranked recommended tracks for the evaluation. Regarding the
precision of the computed recommendations, we observe that the best results are obtained
by the proposed Music + Culture model, which incorporates both the user’s general
musical preferences and the cultural background of the user. This model reaches a
precision@10 of 0.98, whereas the Music model reaches a precision of 0.95 and the Culture
model a precision of 0.31, respectively. Compared to the baselines, we observe that using
only the country of the user as a proxy for cultural aspects (Country model) achieves
a precision value of 0.83, whereas the User + Track model performs worse, reaching a
precision value of 0.13.

Regarding the recall values obtained, we observe that again, the Music 4+ Culture model
performs best (0.63), followed by the Music (0.59) and Country (0.52) models. The User
+ Track baseline again reaches a lower value (0.08), whereas the Country model again
performs well (0.52). For the sake of completeness, we also list the F; values obtained
by the individual models, which are consistent with the individual findings regarding
recall and precision. In preliminary baseline experiments, we have also compared our
approach with a traditional context-agnostic matrix factorization approach. Singular
value decomposition based on implicit feedback achieved a precision of 0.49, a recall of
0.10, and an Fj-score of 0.17. As already elaborated, we consider the precision metric
more relevant in this scenario. Thus, these baseline results show that the proposed models
do indeed contribute to recommendation quality.

Figure 8.1 shows a precision/recall plot of the evaluated approaches for n = 1...50
track recommendations. From this plot, we again observe the superior performance
of the music-cultural user model across all evaluated lengths of recommendation lists
n. The plot also highlights the difference between the two models that incorporate
acoustic features for describing musical preferences (Music + Culture and Music) and
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Model Prec Rec Fy

Music + Culture 0.98 (£ 0.04) 0.63 (£ 0.15) 0.75 (£ 0.10)
Music 0.95 (£ 0.06) 0.59 (£ 0.15) 0.72 (£ 0.11)
Country 0.83 (£ 0.11) 0.52 (£ 0.12) 0.63 (& 0.10)
Culture 0.31 (£ 0.15) 0.18 (£ 0.08) 0.24 (& 0.09)
User + Track 0.13 (£ 0.10) 0.08 (£ 0.06) 0.13 (& 0.06)

Table 8.4.: Precision, recall, and F-score for all proposed models (sorted by performance;

standard deviation in parenthesis).

the remaining user models that do not exploit this information, where precision and
recall are both substantially lower. These findings underline that the musical preference
of users is paramount for recommendation scenarios. We can also observe that using the
user’s country as a proxy for their cultural background does indeed contribute. Naturally,
including a set of cultural features to describe the user’s cultural background also allows to
exploit a more comprehensive, multi-dimensional notion of similarity between users [420],
which can be exploited by the recommender system. We also have experimented with
combining musical features and country code, however, this did not increase performance
compared to using only musical features.

Precision
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Figure 8.1.: Precision-recall-curves for top-n = 1...50 recommendations for all models.
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8.6.2. Rating Prediction Evaluation

Besides the decision-based evaluation regarding recall and precision, we are also interested
in the prediction accuracy of the individual user models. Table 8.5 presents the RMSE
and MAE per user across all tracks within the user’s test set. These findings are in
line with the decision-based findings as the lowest RMSE is again achieved by the Music
+ Culture model (RMSE of 0.15). In comparison, relying solely on acoustic features
to describe users and tracks (Music model) achieves a RMSE of 0.17, whereas relying
on cultural aspects only results in a RMSE of 0.88. The baseline approaches reach
RMSE values of 0.36 (Country model) and 0.93 (User + Track model), respectively. The
evaluation of mean absolute errors of the individual models is consistent with the findings
of the RMSE findings.

Model RMSE MAE
Music + Culture 0.15 0.02
Music 0.17 0.03
Country 0.36 0.13
Culture 0.88 0.77
User + Track 0.93 0.85

Table 8.5.: RMSE and MAE of all models.

8.6.3. Influence of Features

Apart from the performance of the proposed music-cultural user model in regard to
recommendation quality, we are also interested in the contribution of the individual
features of the user model to the trained XGBoost classification model. Therefore, we
utilize the gain of each feature in the XGBoost model [93], which is a measure for the
improvement in accuracy when adding a split on the given feature to the tree. This gain
is computed for each feature in every tree of the trained model and is then averaged
to a final gain value for each feature. Figure 8.2 shows the contribution of the top-
30 individual features to classification performance of the proposed music-cultural user
model. Please recall that in the proposed model, both users and tracks are described by
musical and cultural features (cf. Table 8.3). Hence, we color the bars of user features
in blue and track features in red. In total, acoustic features account for 93% of the gain
(76% user features, 17% track features), WHR features account for 4% and Hofstede’s
dimensions for 3% of the gains.

The results show that the major contributing features are related to the acoustic fea-
tures that describe the user’s musical preference and the tracks. This high importance of
acoustic features when it comes to describing users is congruent with the analyses of [363]
and in line with the findings of the top-n recommendation evaluation, where the Mu-
sic model was the second best performing model. The features that contribute most to
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the classification accuracy (and hence, recommendation performance) are the average
acousticness (user acousticness avg), instrumentalness (user instrumentalness avg)
and danceability (user danceability avg) of tracks the user has listened to. As for
the track features, acousticness and instrumentalness are also the main contributing fea-
tures. This high contribution of instrumentalness and acousticness is in line with previous
findings [362], where these two features have been shown to discriminate tracks well in a
principal component analysis. These findings are also congruent with the results of the
evaluation conducted, where the user model that solely relies on the user’s preferences
achieved the second best recall and precision values (performing substantially better than
the Culture, Country, and User + Track models). However, while socio-economic fac-
tors are not among the top contributing features, socio-economic features nevertheless
contribute to the recommendation quality and make a decisive difference regarding rec-
ommendation performance. The user features contributing most are healthiness, social
support, happiness, gdp and masculinity and for tracks, the happiness and social support
features provide the highest gain. While WHR features contribute more in our scenario,
features stemming from both sources (WHR and Hofstede’s cultural dimensions) are
among the top-contributing features; this also supports our choice to include both social
and economic features in the user model as both contribute to higher recommendation
performance.

user_freedom -
user_masculinity -

user_gdp -

track_happiness -
user_long_term_orientation -
track_danceability -
user_happiness -
user_social_support -
user_healthiness -
track_valence -
track_energy -
user_liveness_std -
track_liveness -
user_liveness_avg -
user_danceability_std -
user_valence_std -
user_speechiness_std -
user_valence_avg -
user_speechiness_avg -
user_energy_std -
track_speechiness -
user_energy_avg -
user_acousticness_std -
user_tempo_avg -
track_instrumentalness -
user_instrumentalness_std -
track_acousticness -
user_danceability_avg -
user_instrumentalness_avg -
user_acousticness_avg -
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Figure 8.2.: Information gain of the top 30 individual user and track features of the Music
+ Culture model.
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8.6.4. Discussion and Limitations

We believe that the proposed music-cultural user model and the conducted evaluation are
an important first step towards culture-aware music recommender systems. The obtained
results show that the proposed music-cultural user model outperforms all other evaluated
models. However, we still see a few limitations of our approach, which we will elaborate
on in the following. First, we currently represent the musical preferences of a user by
utilizing the average of the acoustic features of the tracks the user has listened to and the
standard deviation thereof. While we believe that this method is sufficiently elaborate
for the experiments conducted, this is a rather naive approach towards representation
and does not reflect the diverse and often context-related musical preferences of users.
Similarly, we currently use a rather simple majority voting approach for assigning cultural
features to tracks. However, in the paper at hand, we are particularly interested in the
influence of individual features and characteristics of users, their cultural background,
and tracks on the recommendation performance and, hence, deliberately refrain from
utilizing a more comprehensive user model. Nevertheless, looking into creating more
comprehensive and complex user models based on the cultural background of users is
part of our future research agenda. For instance, [508] employed Gaussian Mixture
Models (GMM) for modeling a user’s diverse tastes of music and showed that utilizing
such a GMM approach in combination with the acoustic features of the tracks the user
listed to is able to capture a user’s musical preferences well.

The test set creation procedure applied (random 50 positive and 500 negatives samples
per user) allows for evaluating the ability to distinguish positive and negative samples.
We have also experimented sampling 10 relevant and 100 irrelevant tracks for each user,
however, we argue that given the high number of listening events per user in the dataset,
sampling 50 positive and 500 negative tracks reflects a more suitable scenario. The results
achieved were high in precision and low on the prediction error metrics, showing that the
proposed models were able to detect the 50 positive samples and rank these on top.

As already stated in Section 8.4.4, we consider the classification-based approach for the
computation of recommendations as a baseline regarding the actual recommender system.
However, we believe that even though the method is rather simple, it provides us with
conclusive results regarding the user models evaluated, where we clearly put our focus
on.

8.7. Interplay Between Country Characteristics and Music
Preferences

In the following, we analyze the cultural/socio-economic and acoustic features on a coun-
try level more thoroughly, aiming to uncover country-specific patterns of their inhabi-
tants’ music preferences in terms of acoustic features and to identify similarities and
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differences between countries (Section 8.7.1). We further investigate to which extent
cultural /socio-economic and acoustic features correlate with each other, on a per-feature-
basis (Section 8.7.2).

8.7.1. Country-specific Differences of Acoustic Feature Preferences

Danceability Energy  Speechiness  Acousticness Instrumentalness Liveness Valence Tempo
AR | 0.512 (0.091) 0.739 (0.140) 0.048 (0.017) 0.113 (0.163) 0.059 (0.166) 0.145 (0.034) 0.482 (0.122)  123.113 (7.756)
AT | 0.476 (0.102) 0.766 (0.172) 0.059 (0.025) 0.106 (0.182) 0.127 (0.227)  0.154 (0.042) 0.405 (0.133)  124.400 (8.483)
AU | 0.491 (0.100) 0.746 (0.157) 0.057 (0.028) 0.112 (0.172) 0.119 (0.228) 0.153 (0.043) 0.435 (0.129)  123.562 (9.116)
BE | 0.507 (0.106) 0.718 (0.170) 0.056 (0.029) 0.143 (0.198) 0.165 (0.260)  0.148 (0.045) 0.428 (0.129)  122.783 (8.825)
BG | 0.491 (0.101) 0.801 (0.135) 0.062 (0.029) 0.063 (0.123) 0.117 (0.215)  0.159 (0.044) 0.418 (0.131) 124.052 (10.034)
BR | 0.509 (0.089) 0.758 (0.148) 0.053 (0.024) 0.114 (0.173) 0.029 (0.112) 0.154 (0.054) 0.478 (0.121) 124.566 (10.589)
CA | 0.495 (0.098) 0.736 (0.159) 0.056 (0.028) 0.126 (0.180) 0.117 (0.222) 53 (0.048) 0.441 (0.128)  123.161 (8.588)
CH | 0.518 (0.106) 0.706 (0.169) 0.053 (0.025) 0.161 (0.197) 0.134 (0.251) 0.142 (0.037) 0.442 (0.140)  122.438 (8.510)
CL | 0.495 (0.099) 0.769 (0.136) 0.054 (0.022) 0.091 (0.155) 0.072 (0.170)  0.151 (0.041) 0.455 (0.131)  124.367 (7.929)
CN | 0.502 (0.118) 0.643 (0.197) 0.051 (0.041) 0.232 (0.249) 0.153 (0.279) 0.145 (0.074) 0.393 (0.153) 121.190 (13.016)
CO | 0.532 (0.097) 0.755 (0.129) 0.050 (0.017) 0.099 (0.154) 0.073 (0.169) 0.142 (0.036) 0.486 (0.141)  123.085 (7.644)
CZ | 0.487 (0.097) 0.769 (0.154) 0.057 (0.024) 0.094 (0.166) 0.139 (0.235) 0.157 (0.051) 0.418 (0.137)  123.901 (8.317)
DE | 0.502 (0.110) 0.776 (0.154) 0.063 (0.039) 0.094 (0.166) 0.114 (0.227)  0.158 (0.048) 0.445 (0.138)  124.570 (9.937)
DK | 0.524 (0.099) 0.701 (0.172) 0.052 (0.026) 0.161 (0.203) 0.107 (0.220)  0.147 (0.059) 0.445 (0.125)  121.128 (8.498)
EE | 0.504 (0.095) 0.755 (0.144) O 056 (0.028) 0.091 (0.151) 0.147 (0.246)  0.147 (0.037) 0.428 (0.124) 124.531 (10.383)
ES | 0.514 (0.101) 0.733 (0.163) 52 (0.023)  0.141 (0.196) 0.085 (0.194) 0.148 (0.038) 0.474 (0.136)  123.432 (8.257)
FI | 0.487 (0.103) 0.806 (0.132) 0.062 (0.032) 0.062 (0.131) 0.122 (0.219)  0.166 (0.042) 0.428 (0.136)  123.707 (8.277)
FR | 0.533 (0.113) 0.704 (0.159) 57 (0.035)  0.152 (0.193) 0.152 (0.249) 0.144 (0.046) 0.452 (0.145)  120.900 (9.452)
GR | 0.473 (0.091) 0.709 (0.161) 0. 049 (0.020)  0.124 (0.193) 0.198 (0.267)  0.144 (0.033) 0.397 (0.127)  121.519 (8.147)
HR | 0.473 (0.101) 0.752 (0.157) 0.056 (0.026) 0.110 (0.165) 0.158 (0.245) 0.151 (0.038) 0.418 (0.132)  122.991 (8.289)
HU | 0.494 (0.116) 0.800 (0.144) 0.064 (0.033) 0.066 (0.140) 0.189 (0.283)  0.162 (0.045) 0.408 (0.146) 124.793 (10.081)
ID | 0.510 (0.089) 0.716 (0.165) 0.048 (0.023) 150 (0.195) 0.040 (0.144) 0.147 (0.048) 0.448 (0.126) 123.762 (12.311)
IE | 0.503 (0.092) 0.696 (0.174) 0.051 (0.024) 0.164 (0.211) 0.120 (0.222) 0.146 (0.040) 0.445 (0.125)  122.503 (8.780)
IN | 0.487 (0.104) 0.704 (0.186) 0.053 (0.037) 0.158 (0.234) 0.143 (0.266)  0.145 (0.058) 0.398 (0.134) 121.598 (11.939)
IR | 0.455 (0.101) 0.599 (0.215) 0.049 (0.031) 0.278 (0.265) 0.181 (0.281) 0.133 (0.038) 0.298 (0.137) 119.224 (12.176)
IT | 0.501 (0.090) 0.705 (0.166) 0.051 (0.023) 0.158 (0.199) 0.085 (0.186)  0.144 (0.036) 0.444 (0.130)  122.752 (8.591)
JP | 0.512 (0.102) 0.729 (0.189) 0.056 (0.032) 0.153 (0.220) 0.156 (0.268) 0.153 (0.060) 0.474 (0.159) 123.181 (13.594)
LT | 0.477 (0.105) 0.750 (0.154) 0.054 (0.020) 0.097 (0.165) 0.182 (0.264)  0.146 (0.037) 0.393 (0.124)  122.687 (8.250)
LV | 0.494 (0.099) 0.730 (0.172) 0.056 (0.033) 0.122 (0.192) 0.158 (0.263) 0.149 (0.046) 0.399 (0.125) 121.961 (12.291)
MX | 0.529 (0.091) 0.757 (0.124) 0.051 (0.023) 0.091 (0.145) 0.079 (0.191)  0.146 (0.040) 0.485 (0.130)  124.044 (8.197)
NL | 0.518 (0.100) 0.705 (0.171) 0.053 (0.029) 0.154 (0.202) 0.115 (0.235) 0.144 (0.040) 0.446 (0.130)  122.553 (9.230)
NO | 0.507 (0.101) 0.710 (0.162) 0.052 (0.024) 0.147 (0.193) 0.117 (0.225)  0.145 (0.037) 0.435 (0.130)  122.500 (8.098)
NZ | 0.486 (0.100) 0.771 (0.144) 59 (0.026)  0.085 (0.154) 0.136 (0.252) 0.158 (0.044) 0.432 (0.134)  124.857 (9.177)
PL | 0.504 (0.102) 0.766 (0.145) 0.065 (0.046) 0.093 (0.155) 0.099 (0.208) 0.154 (0.048) 0.436 (0.137) 122.569 (10.738)
PT | 0.478 (0.107) 0.736 (0.178) 0.056 (0.028) 0.129 (0.203) 0.145 (0.241)  0.150 (0.041) 0.407 (0.132)  122.887 (9.709)
RO | 0.476 (0.113) 0.720 (0.166) 0.053 (0.023) 0.121 (0.184) 0.224 (0.285) 0.142 (0.034) 0.373 (0.139)  121.389 (7.864)
RS | 0.499 (0.119) 0.745 (0.154) 0.059 (0.034) 0.102 (0.167) 0.139 (0.240) 0.151 (0.041) 0.424 (0.143)  121.517 (8.257)
RU | 0.485 (0.099) 0.790 (0.146) 0.061 (0.032) 0.071 (0.149) 0.141 (0.247) 0.161 (0.049) 0.415 (0.136) 124.464 (10.373)
SE | 0.512 (0.096) 0.725 (0.159) 0.053 (0.028) 0.138 (0.185) 0.115 (0.227)  0.147 (0.036) 0.454 (0.123)  123.027 (7.834)
SK | 0.479 (0.103) 0.755 (0.172) 0.064 (0.040) 0.109 (0.178) 0.184 (0.263) 0.156 (0.040) 0.381 (0.136)  122.172 (9.100)
TR | 0.498 (0.095) 0.669 (0.184) 0.049 (0.023) 0.199 (0.228) 0.128 (0.238)  0.137 (0.040) 0.398 (0.125)  119.935 (9.252)
UK | 0.512 (0.096) 0.723 (0.163) 0.054 (0.027) 0.134 (0.192) 0.110 (0.227) 0.148 (0.041) 0.465 (0.128)  123.424 (9.642)
US | 0.507 (0.100) 0.721 (0.163) 0.057 (0.044) 0.140 (0.194) 0.108 (0.221)  0.150 (0.049) 0.461 (0.130)  122.624 (9.813)
VE | 0.515 (0.101) 0.777 (0.113) 0.054 (0.022) 0.070 (0.120) 0.082 (0.198) 0.151 (0.042) 0.476 (0.152) 124.961 (10.287)

Table 8.6.: Means and standard deviations (in parenthesis) of acoustic preferences of each
country’s users. Highest value of each acoustic property is printed in blue; lowest in red.
Countries are sorted alphabetically according to their country code.
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To obtain insights into country-specific particularities of the acoustic properties of music
consumption, we provide an overview of the investigated acoustic features (and their
standard deviations) per country, computed over all users in each country in Table 8.6.
Overall, we observe pronounced differences between countries for most of the properties,
but also non-negligible standard deviations within countries, indicating partly substantial
variances in music preferences among citizens. Highest danceability in music preferences
can be found in France (0.533), Colombia (0.532), and Mexico (0.529); lowest in Iran
(0.455). Notably, Iran is also the country with lowest music energy (0.599) in its popula-
tion’s preferences. In contrast, the populations of Finland (0.806), Bulgaria (0.801), and
Hungary (0.800) like highly energetic music. This is further evidenced when investigating
their preferred music styles, which include several variants of the genre metal. As for
speechiness, lowest figures are found in Indonesia and Argentina (both 0.048), whereas
music listeners in Poland (0.065) tend to commonly listen to music featuring spoken
words such as hip-hop or rap. Acousticness is lowest for Finland (0.062) and Bulgaria
(0.063); highest for Iran (0.278), China (0.232), and Turkey (0.199). As for instrumen-
talness, the lowest-scoring countries are Brazil (0.029), Indonesia (0.040), and Argentina
(0.059). On the other end, users in Romania (0.224) and Greece (0.198) particularly
like non-vocal instrumental music. Regarding liveness, Iran (0.133) and Turkey (0.137)
show lowest values, whereas Finland (0.166) has the highest figures for this attribute.
This may be explained by Finns having a particular preference for live music and by
Finland having a very vivid music performing culture and therefore a large number of
hobby musicians as well as (semi-)professional bands. Music listened to by Iranian users
scores lowest on the dimension of valence, on average (0.298). In stark contrast, music
consumed in South and Middle America scores highest on this dimension; in particular,
users in Colombia (0.486), Mexico (0.485), Argentina (0.482), and Brazil (0.478) tend to
listen to music that may be suited to reflect or evoke positive emotions. Finally, when it
comes to tempo, users in Iran and Turkey tend to prefer slower music, on average (both
around 120 bpm). On the other hand, Venezuela, New Zealand, Hungary, and Germany
are more into faster music, on average (around 125 bpm).

8.7.2. Correlations Between Cultural Background and Music Preferences

To uncover possible relationships between acoustic properties of a country’s inhabitants’
music preferences and the cultural or socio-economic characteristics, we investigate the
correlation between each of the acoustic features and the cultual /socio-economic dimen-
sions. Tables 8.7 and 8.8 depict Spearman’s rank-order correlation coeflicients for Hof-
stede’s cultural features and WHR socio-economic characteristics, respectively. We use
rank-order correlation to cope with the different value ranges of the various dimensions
investigated and compute these correlations considering all users in our dataset as obser-
vations. To describe each user’s aggregated musical feature vector, we follow the same
approach as detailed in Section 8.4.3. Correlations larger than 0.1 (or lower than -0.1) are
highlighted in bold. Statistically significant correlations are marked with an asterisk.
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PD IDV MAS UA LTO IND
Danceability -0.035*%  0.044*  0.023*  -0.052* -0.024* 0.072*
Energy 0.056* -0.102* -0.014 0.116* 0.076* -0.115%*
Speechiness 0.022* -0.034* 0.016* 0.085*  0.065*  -0.096*
Acousticness -0.056* 0.105*  0.026* -0.122* -0.086* 0.125%*
Instrumentalness | -0.012 0.011 -0.029* 0.038*  0.055*  -0.055*
Liveness 0.021* -0.042* -0.014 0.059* 0.035* -0.065*
Valence -0.042*  0.059*  0.047*  -0.076* -0.063* 0.114%*
Tempo 0.009 -0.041%* 0.008 0.031*  0.043* -0.025*

Table 8.7.: Spearman rank-order correlations between users’ acoustic properties of listen-
ing behavior and cultural features (Hofstede). Correlations >0.1 are highlighted in bold
face. Statistically significant correlations at p < 0.001 are marked with an asterisk (*).

Happiness GDP Social Sup. Life Exp. Freedom Trust Generosity

Danceability 0.035*  0.036* -0.010 0.049* 0.037*  0.051* 0.052%*
Energy -0.036* -0.067* 0.056* -0.056* -0.026* -0.033* -0.101*
Speechiness -0.018*%  -0.007 0.059* -0.017* 0.011  -0.004 -0.067*
Acousticness 0.055*  0.079* -0.046* 0.070* 0.039*  0.048* 0.118%*
Instrumentalness -0.031*%  0.030* 0.042%* 0.040* 0.006 0.001 -0.044*
Liveness 0.005 -0.019* 0.056* -0.030%* 0.001  -0.008 -0.048*
Valence 0.071*  0.047* 0.008 0.051* 0.044*  0.064* 0.084*
Tempo 0.004 -0.025* 0.046* -0.015%* 0.001 0.003 -0.016*

Table 8.8.: Spearman rank-order correlations between users’ acoustic properties of listen-
ing behavior and socio-economic features (WHR). Correlations >0.1 are highlighted in
bold face. Statistically significant correlations at p < 0.001 are marked with an asterisk

(*)-

As a general observation, while almost all correlations are significant (even at p < 0.001),
most are only weak, which hints at the different nature of aspects to compare. Never-
theless, some interesting observations can be made. Focusing on Table 8.7, we observe
notable correlations for the cultural trait of indulgence (IND). More precisely, a positive
correlation between IND and acousticness (0.125) as well as valence (0.114) is identified.
This means that societies that like to engage in joyful activities tend to listen to music
that has a higher probability of being acoustic and to music that evokes positive emo-
tions, which makes sense. At the same time, indulging populations tend to prefer lower
energy levels in music (correlation of -0.115), which hints at a preference for more relax-
ing music. Furthermore, uncertainty avoidance (UA) is positively correlated with music
energy level (0.116), but negatively with acousticness (-0.122). Societies characterized
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by stiff codes and laws therefore tend to prefer more energetic music, but lower amounts
of acoustic tracks. Also, there is a positive correlation between individualism (IDV) and
acousticness (0.105).

Comparing the acoustic features with the WHR dimensions, cf. Table 8.8, we can only
observe two correlations exceeding the threshold. Both relate to the aspect of generosity.
More precisely, we see a positive correlation between generosity and acousticness (0.118),
whereas a negative one with energy (-0.101). More generous populations therefore tend
to prefer lower energetic music, but larger amounts of acoustic tracks.

8.8. Conclusion and Future Work

The contributions of this work are two-fold: (i) we introduced a novel music-cultural
user model that jointly relies on acoustic song features and culture-related features to
describe the user’s musical preferences and cultural background and (ii) we proposed a
recommender system that leverages these features as contextual information. Our eval-
uations based on a dataset comprising more than 55,000 users showed that the proposed
user model is able to outperform models that incorporate either solely musical aspects or
cultural aspects and the evaluated baseline methods (relying on user’s country as a proxy
for culture, utilizing solely the user’s and track’s identifiers). In regard to both recall
and precision, we show that adding contextual information obtained via incorporating
audio features of tracks, data extracted from the World Happiness Report and Hofst-
ede’s cultural dimensions contributes to improved recommendations when compared to
the baseline approaches. Particularly, we find that a combination of acoustic features of
the songs a user listened to (describing the individual music preferences of a user) and
the World Happiness Report as a description of the cultural/socio-economic background
of the user performs best.

Future work includes extending the user models with further data utilized for capturing
cultural aspects of users (e.g., the Quality of Government dataset [458]). Moreover, we are
particularly interested in analyzing the country-specific influence of each of the individual
features of the proposed user models on the overall recommendation performance to get
a deeper understanding for features that are able to capture country-specific listening
patterns. Regarding the representation of both the musical preferences and cultural
aspects, we plan to investigate more sophisticated modeling approaches. Particularly
regarding the representation of musical preferences of users, we believe that, e.g., using
Gaussian mixture models will allow for a more differentiated representation of users and
their (possibly diverse and broad) preferences. Finally, we aim to transcend the country
level for our culture-based analyses, e.g., focusing on culturally similar users that live in
the same cultural region (but not necessarily in the same country).

130



9. Support the Underground:
Characteristics of Beyond-Mainstream
Music Listeners

Publication

D. Kowald, P. Miillner, E. Zangerle, C. Bauer, M. Schedl, and E. Lex. Support the Un-
derground: Characteristics of Beyond-Mainstream Music Listeners. EPJ Data Science,
10(1):1-26, 2021. pOI: 10.1140/epjds/s13688-021-00268-9

Abstract

Music recommender systems have become an integral part of music streaming services
such as Spotify and Last.fm to assist users navigating the extensive music collections
offered by them. However, while music listeners interested in mainstream music are tra-
ditionally served well by music recommender systems, users interested in music beyond
the mainstream (i.e., non-popular music) rarely receive relevant recommendations. In
this paper, we study the characteristics of beyond-mainstream music and music listeners
and analyze to what extent these characteristics impact the quality of music recommen-
dations provided. Therefore, we create a novel dataset consisting of Last.fm listening
histories of several thousand beyond-mainstream music listeners, which we enrich with
additional metadata describing music tracks and music listeners. Our analysis of this
dataset shows four subgroups within the group of beyond-mainstream music listeners
that differ not only with respect to their preferred music but also with their demographic
characteristics. Furthermore, we evaluate the quality of music recommendations that
these subgroups are provided with four different recommendation algorithms where we
find significant differences between the groups. Specifically, our results show a positive
correlation between a subgroup’s openness towards music listened to by members of other
subgroups and recommendation accuracy. We believe that our findings provide valuable
insights for developing improved user models and recommendation approaches to better
serve beyond-mainstream music listeners.
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9. Characteristics of Beyond-Mainstream Music Listeners

9.1. Introduction

In the digital era, users have access to continually increasing amounts of music via mu-
sic streaming services such as Spotify and Last.fm. Music recommender systems have
become an essential means to help users deal with content and choice overload as they
assist users in searching, sorting, and filtering these extensive music collections. Simul-
taneously, both music listeners and artists benefit from the employed segmentation and
personalization approaches that are typically leveraged in music recommendation ap-
proaches [418]. As a result, users with different preferences and needs can be targeted in
various ways with the goal that all users are presented the information and content that
they need or prefer. This also means that current recommendation techniques should
serve all users equally well, independent of their inclination to popular content.

@ Mainstream

NMF{ @——@ @® Beyond-mainstream

| Overall

UserKNN o—|—0

55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5
Mean absolute error

Figure 9.1.: Recommendation accuracy measured by the mean absolute error (MAE) of a
non-negative matrix factorization-based approach (i.e., NMF [302]) and a neighborhood-
based approach (i.e., UserKNN [190]) for mainstream and beyond-mainstream user
groups in Last.fm. We see that beyond-mainstream users receive a substantially lower
recommendation quality (i.e., higher MAE) compared to mainstream music listeners.
Thus, for recommender systems, it is harder to provide high-quality recommendations to
beyond-mainstream music listeners than to mainstream music listeners.

Present work. In the paper at hand, we focus on music consumers who listen to music
beyond the mainstream (i.e., users who listen to non-popular music) in the music stream-
ing platform Last.fm'. As highlighted in Figure 9.1, current recommender systems do
not work well for consumers of beyond-mainstream music (see Section 9.3.5 for details
on this analysis). In contrast, music consumers who listen to popular music seem to
get better recommendations. This finding is not essentially new. In fact, it is a widely-
known problem that recommender systems (and those based on collaborative filtering,
in particular) are prone to popularity bias, which leads to the behavior that long-tail

"https://www.last.fm/
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items (i.e., items with few user interactions) have little chance being recommended. This
phenomenon is also present across different application domains such as movies [4] or
music [82].

Our previous work [279] has shown that users interested in beyond-mainstream music
tend to have larger user profile sizes (i.e., individual users show a high(er) number of
distinct artists they have listened to) compared to users interested in mainstream music.
The observation that beyond-mainstream music listeners produce a substantial amount
of digital footprints motivates the need to improve the recommendation quality for this
group. However, although related research has already studied the long-tail recommen-
dation problem (e.g., [79, 80, 162, 470]; see Section 9.2 for a more detailed discussion of
related work), it is still a fundamental challenge to understand and identify the character-
istics of beyond-mainstream music and beyond-mainstream music listeners. Additionally,
related work [460] has shown that the group-specific concepts of openness and diversity
influence recommendation quality, where openness is defined as across-group diversity
(i.e., do users of one group listen to the music of other groups?) and diversity is defined
as within-group variability (i.e., how dissimilar is the music listened to by users within
groups?). Thus, we are also interested in the correlation between the characteristics of
beyond-mainstream music and music listeners with openness and diversity patterns as
well as with recommendation quality. Concretely, our work is guided by the following
research question:

RQ: What are the characteristics of beyond-mainstream music tracks and music listeners,
and how do these characteristics correlate with openness and diversity patterns as well
as with recommendation quality?

To address this research question, we create, provide, and analyze a novel dataset called
LFM-BeyMS, which contains complete listening histories of more than 2,000 beyond-
mainstream music listeners mined from the Last.fm music streaming platform. Besides,
our dataset is enriched with acoustic features and genres of music tracks. Using this en-
riched dataset, we identify different types of beyond-mainstream music via unsupervised
clustering applied to the acoustic features of music tracks. We then characterize the re-
sulting music clusters using music genres. Then, we assign beyond-mainstream users to
the clusters to further divide the beyond-mainstream users into subgroups. We study how
the characteristics of these beyond-mainstream subgroups correlate with openness and
diversity patterns as well as with recommendation quality measured through prediction
accuracy.

Findings and contributions. We identify four clusters of beyond-mainstream music in
our dataset: (i) C' ‘tolk, music with high acousticness such as “folk”, (ii) Chard, high energy
music such as “hardrock”; (iii) Cgmpi, music with high acousticness and high instrumental-
ness such as “ambient”, and (iv) Cejee, music with high energy and high instrumentalness
such as “electronica”’. By assigning users to these clusters, we get four distinct subgroups
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of beyond-mainstream music listeners: (i) Usou, (ii) Unard, (iii) Uampi, and (iv) Ugec. We
also find that these groups differ considerably with respect to the accuracy of recommen-
dations they receive, where group Ug.p gets significantly better recommendations than
Uhard- When relating our results to openness and diversity patterns of the subgroups,
we find that U,y is the most open but least diverse group, while Upqrq is the least open
but most diverse group. This is in line with related research [460|, which has shown
that openness is stronger correlated with accurate recommendations than diversity. This
means that users are more likely to accept recommendations from different groups (i.e.,
openness) rather than varied within a group (i.e., diversity).

Summed up, our contributions are:

e We identify more than 2,000 beyond-mainstream music listeners on the Last.fm
platform and enrich their listening profiles with acoustic features and genres of
music tracks listened to (Sections 9.3.1-9.3.4).

e We validate related research by showing that beyond-mainstream music listeners
receive a significantly lower recommendation accuracy than mainstream music lis-
teners (Section 9.3.5).

e We identify four clusters of beyond-mainstream music using unsupervised clus-
tering and characterize them with respect to acoustic features and music genres
(Section 9.4.1).

e We define four subgroups of beyond-mainstream music listeners by assigning users
to the music clusters and discuss the relationship between openness, diversity, and
recommendation quality of these groups (Section 9.4.2).

e To foster reproducibility of our research, we make available our novel LEM-BeyMS
dataset via Zenodo? and the entire Python-based implementation of our analyses
via Github?.

We believe that our findings provide useful insights for creating user models and recom-
mendation algorithms that better serve beyond-mainstream music listeners.

0.2. Related Work

We identify three strands of research that are relevant to our work: (i) modeling of
music preferences, (ii) long-tail recommendations, and (iii) popularity bias in music rec-
ommender systems.

2https://doi.org/10.5281/zenodo. 3784764
3https://github.com/pmuellner/supporttheunderground
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Modeling of music preferences. A multitude of factors [423] influences musical tastes
and musical preferences of users. Characteristics of music listeners and music preferences
have been studied in various research domains [177], ranging from music sociology |13] and
psychology [118] to music information retrieval and music recommender systems [418].
Studies on music listening behavior showed that personal traits and long-term music
preferences are correlated as people tend to prefer music styles that align with their
personalities [273, 376]. Furthermore, related work found a relationship between music
and motivation [240], music and emotion [226, 227, 492, 515] or both personality and
emotion [148]. Openness, a personality trait from the Five Factor Model [163], has also
been shown to positively influence a user’s preference for music recommendations [460].
Specifically, the authors of [460] found that people tend to prefer recommendations from
different kinds of music (i.e., openness) rather than varied within a specific kind of music
(i.e., diversity). Others showed that familiarity has a positive influence on music prefer-
ences 354, 426] and that music preferences may change over time [323]. Another strand
of research on modeling users’ music preferences leverages content features, e.g., acoustic
features. It has been shown that the distribution of acoustic features of a user’s preferred
genre substantially influences the user’s choice of music within other genres [36]. Also,
acoustic features have been utilized to model users’ preferences under different contextual
conditions, in order to refine recommendation quality [167]. Based on tracks’ acoustic
features, the authors of [508| identified several types of music, and subsequently modeled
each user by linearly combining the acoustic features of the music types. In contrast to
these works, we focus on using acoustic features of music tracks for modeling and clus-
tering beyond-mainstream music. Additionally, we link these beyond-mainstream music
clusters to music genres and users in our Last.fm data sample.

Long-tail recommendations. Related research |79, 470| has found that individual music
consumption is biased towards popular music and that usage data for less popular music
is scarce. Due to the scarcity problem, items with no or few ratings (i.e., long-tail items)
have little chance of being recommended [80]. As a consequence, users that particularly
favor items with few ratings or interactions are less likely to be recommended those items
that they like [82]. That is problematic because many users, from time to time, prefer
niche music [162]. Therefore, such users are not well served as a result of their preference
for less popular items. That has been attributed to popularity bias, which corresponds
to over-representation of popular items in the recommendation lists [65, 138, 211]. Ab-
dollahpouri et al. [4] studied popularity bias in a dataset of movies (i.e., the MovieLens
1M dataset [181]) from the user perspective. Their study showed that commonly used
recommendation techniques tend to deliver worse recommendations to users who prefer
less popular movies. In our work [279], we found evidence for popularity bias in a Last.fm
dataset and showed that traditional personalized recommendation algorithms such as col-
laborative filtering deliver worse recommendations for consumers of niche music. In the
present work, we aim to gain a deeper understanding of the behavior and preferences of
this beyond-mainstreaminess user group. Thus, in contrast to existing works in long-tail
recommendations, we focus on the user rather than the item perspective.
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Popularity bias in music recommender systems. Music recommender systems [418| are
crucial tools in online streaming services such as Last.fm, Pandora, or Spotify. They
help users find music that is tailored to their preferences. The basis of music recom-
mender systems are user models derived from users’ listening behavior, user properties
such as personality (e.g., [95]), content features of music, or hybrid combinations of both,
e.g., [15, 123, 234, 508|. As discussed earlier, due to insufficient amounts of usage data
for less popular items, many music recommendation algorithms do not provide useful rec-
ommendations for consumers of less popular and niche items. As a remedy, in [277], an
approach is suggested that divides music consumers into experts and novices according
to their long tail distribution in their playlists. These experts are then converted to nodes
with bidirectional links connecting all the experts. These links are created to perform
link analysis on the graph and to assign fine-grained weights to songs. The presented
approach helps add music from the long-tail into the recommendation list. In our previ-
ous research [281], we use a framework [266] that employs insights from human memory
theory to design a music recommendation algorithm that provides more accurate recom-
mendations than collaborative filtering-based approaches for three groups of users, i.e.,
low-mainstream, medium-mainstream and high-mainstream users. While the awareness
of popularity bias in music recommender systems increases (e.g., [38]), the characteristics
of music consumers whose preferences lie beyond popular, mainstream music are still not
well understood. In the present work, we shed light on the characteristics of such beyond-
mainstream music consumers and relate them to openness and diversity patterns as well
as recommendation quality. With this, we aim to provide useful insights for creating
novel music recommendation models that mitigate popularity bias.

0.3. Preliminaries

We investigate the characteristics of beyond-mainstream music listeners in a dataset
mined from Last.fm, a popular music streaming platform. We characterize the tracks
in our dataset with acoustic features. Besides, we compare the recommendation accu-
racy of beyond-mainstream music listeners with the one of mainstream music listeners
to motivate our subsequent analysis of the characteristics of beyond-mainstream music
listeners.

9.3.1. Acoustic Music Features

For our analyses, we characterize music tracks using acoustic features that describe the
content of a given track. Following the lines of, e.g., |21, 314, 362, 508|, we rely on
acoustic features provided by the Spotify API as a compact characterization of tracks?®.
The following eight features are extracted from the audio signal of a track:

‘https://developer.spotify.com/web-api/get-several-audio-features/
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Danceability captures how suitable a track is for dancing and is computed based “on a
combination of musical elements including tempo, rhythm stability, beat strength,
and overall regularity”.

Energy describes the perceived intensity and activity of a track and is based on the
dynamic range, perceived loudness, timbre, onset rate, and general entropy of a
track.

Speechiness captures the presence of spoken words in a track. High speechiness values
indicate a high degree of spoken words (e.g., an audiobook), whereas medium values
indicate tracks with both music and speech (e.g., rap music). Low values represent
typical music tracks.

Acousticness measures the probability that the given track only contains acoustic in-
struments.

Instrumentalness quantifies the probability that a track contains no vocals, i.e., the
track is instrumental.

Tempo measures the rate of the track’s beat in beats per minute.

Valence describes the “emotional positiveness” conveyed by a track (i.e., cheerful and
euphoric tracks reach high valence values).

Liveness measures the probability that a track was performed live, i.e., whether an
audience is present in the recording.

9.3.2. Enriched Dataset of Music Listening Events

To study characteristics of beyond-mainstream users and their listening preferences, we
create a novel dataset called LFM-BeyMS that contains the required information for such
analyses. We base our work on a dataset gathered from the Last.fm music platform, which
we considerably enrich with the music tracks’ acoustic features (see Section 9.3.1) [512].
Additionally, we combine this data with mainstreaminess information of Last.fm users
(see Section 9.3.3) as well as music genre information to identify beyond-mainstream
listeners and music (see Section 9.3.4).

An overview of our new LFM-BeyMS dataset and its data sources is depicted in Fig-
ure 9.2. As shown, the starting point for our new dataset is the publicly available
LFM-1b dataset® of music listening information shared by users of the online music plat-
form Last.fm [408]. LFM-1b contains listening histories of 120,322 users; their listening
records (or “listening events”’) have been created between January 2005 and August 2014.

Shttp://www.cp. jku.at/datasets/LFM-1b/
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Figure 9.2.: Overview of our new LFM-BeyMS dataset and its data sources. We depict
the different features, their origin, and relation, and show the feature groups with the
number of contained features in brackets. LFM-BeyMS contains BeyMS, i.e., data to
study the beyond-mainstream user group, and Recommendation, i.e., data to conduct
recommendation experiments of beyond-mainstream and mainstream music listeners.

They sum up to over 1.1 billion listening events (LEs), where each LE is described by
an (anonymous) user identifier, the artist name, the album name, the track name, and
the timestamp of the listening event. Also, the LFM-1b dataset includes demographics
of some users (i.e., country, age, and gender).

To enrich the LFM-1b dataset to suit our task, we utilize our previously created CultMRS
music recommendation dataset [503|. This dataset contains 55,191 users, who have lis-
tened to a total of 26,022,625 distinct tracks, captured by a total of 807,890,921 listening
events [512].

To further enrich the dataset with music acoustic features, we gather the acoustic fea-
tures described in Section 9.3.1 for the tracks remaining in the dataset after the filtering
described above. To this end, we rely on the Spotify API to gather content-based acoustic
features for each track. Particularly, we search tracks using the <track, artist, album>
triples extracted from the LFM-1b dataset using the Spotify search API® to gather the
Spotify track URI of each track by using all three parts of the triple in a conjunctive
query. In total, this allowed gathering 4,326,809 Spotify URIs. For the remainder of the
tracks, we were not able to retrieve a URI. We attribute this to two factors: either the

Shttps://developer.spotify.com/web-api/search-item/
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LFM-BeyMS (our novel dataset)

Item CultMRS [503]

BeyMS Recommendation
Users 55,149 2,074 4,148
Tracks 3,478,399 157,444 1,084,922
Artists 337,840 14,922 110,898
Listening Events (LEs) 394,944,868 4,916,174 16,687,363
Min. LEs per user 1 3 9
@1 LEs per user 1,442 1,254 2,604
Median LEs per user 5,667 2,048 3,766
Q3 LEs per user 9,738 3,239 5,252
Max. LEs per user 399,210 10,536 11,177
Avg. LEs per user 7,161.41 (+ 10,326.91) 2,371.526 (& 1,520.629) 4,022.990 (£ 1,898.060)

Table 9.1.: Descriptive statistics of the CultMRS dataset and our novel LFM-BeyMS

dataset. CultMRS comprises acoustic features of tracks. LFM-BeyMS is based on

CultMRS and consists of BeyMS and Recommendation. Our analyses of beyond-

mainstream music listeners utilize BeyMS and our recommendation experiments uti-

lize Recommendation, which includes listening events of both users with beyond-
mainstream and mainstream music taste.

searched track is not provided by Spotify or the track, artist, and album information
cannot be matched to a Spotify track unambiguously. Subsequently, we use the obtained
track URI to query the acoustic features API, which returns the acoustic features of a
given track (cf. Section 9.3.1). In a subsequent cleaning step, we remove all tracks for
which the Spotify API did not provide the full set of acoustic features.

That procedure provides us with a set of 3,478,399 unique tracks and their acoustic fea-
tures. Within the LEM-1b dataset, this amounts to 13.36% of the distinct tracks. Overall,
these account for as much as 48.89% of all listening events (i.e., the tracks listened to
by users) of the LFM-1b dataset. The resulting dataset, now enriched by acoustic mu-
sic descriptors, comprises a total of approximately 394 million listening events of 55,149
users. In Table 9.1 (column “ CultMRS”), we provide further descriptive statistics of the
Cult MRS dataset. We refine this dataset to create our new LFM-BeyMS dataset (column
“BeyMS in Table 9.1), which consists of BeyMS, i.e., data to study the characteristics of
beyond-mainstream music listeners, and Recommendation, i.e., data to conduct recom-
mendation experiments of beyond-mainstream and mainstream music listeners.

9.3.3. Identifying Beyond-Mainstream Music Listeners

To identify beyond-mainstream music listeners, for each user, we compute a mainstreami-
ness score, which is generally defined as the overlap between a user’s individual listening
history and the aggregated listening history of all Last.fm users in the dataset. In this
vein, the mainstreaminess score reflects a user’s inclination to music listened to by the
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Last.fm mainstream listeners (i.e., the “average” Last.fm listener in the dataset). In [39],
several measures of user mainstreaminess are defined. Out of these, we choose the M-
global-R-APC definition since it yielded good results in context-based music recommen-
dation experiments for the LFM-1b dataset, as evidenced in [39]. The M-global-R-APC
measure approximates a user’s mainstreaminess score by computing Kendall’s 7 [238]
rank correlation between the user’s vector of artist play counts and the global vector
of artist play counts (aggregated over all users in the dataset). This definition also ex-
plains the name of the measure, where “M” refers to mainstreaminess, “global” indicates
the global perspective, “R” stands for rank correlation, and “APC” refers to artist play
counts.

Next, we describe how we identify our beyond-mainstream users via filtering the users by
the number of listening events (see Figure 9.3 and Section 9.3.3) and by mainstreaminess
scores (see Figure 9.4 and Section 9.3.3).

Filtering Users by the Number of Listening Events

For our study, we select the users so that listeners of different levels of “listening activity”
are equally represented. We conduct a Gaussian kernel density estimation (KDE) [431]
on the distribution of listening events over users to estimate the continuous probabil-
ity density function (PDF) [112]. However, KDE estimates the PDF via discrete bins
and hence, it is necessary to approximate the gradient via the principle of finite differ-
ences. The gradient of the PDF helps us identifying regions of increasing or decreasing
probability.

Figure 9.3 shows that two large subsets of users exist that exhibit either very few or an
abundance of listening events. For our analysis, we consider only users who are not in
one of the subsets as mentioned earlier. On the one hand, we exclude users with too little
data available for studying their listening behavior; and on the other hand, we exclude
so-called power listeners who might bias our analyses. Furthermore, such users with a
very high number of listening events are often radio stations, which do not contribute
reliable data to our investigations.

Hence, we define lower and upper bounds regarding the number of users’ listening events
to include in our study, such that the rate of change in terms of the number of listening
events is minimal and stable within these boundaries. That requires the gradient of the
region within the lower and upper bound to be near zero (i.e., £107%). By computing
the second-order accurate central differences [369], we obtain an approximation of the
gradient and find the longest cohesive region fulfilling the requirements between a lower
bound of 4,688 and an upper bound of 14,787 listening events per user, which leads to
12,814 users.
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Figure 9.3.: Distribution of listening events in our set of Last.fm users. We set the lower
and upper bound marked as dashed and dotted lines, respectively based on the gradient,
which results in 12,814 users with a similar number of listening events.

Filtering Users by Mainstreaminess Scores

Figure 9.4 illustrates the mainstreaminess distribution of the 12,814 users that we have
extracted based on the number of listening events. Here, mainstreaminess is defined
according to the M-global-R-APC definition taken from [39] (explained in Section 9.3.3).
By setting an appropriate upper bound, we aim to exclude mainstream music listeners.
In other words, we aim to set the upper bound to the beginning of the distribution’s bulk,
which is motivated as follows: Firstly, the first inflection point (i.e., maximal gradient)
of a Gaussian distribution is found at E[X]| — std(X), where E[X] is the expectation,
and std(X) is the standard deviation of the Gaussian random variable X. Secondly,
the first inflection point of a Gaussian distribution is equivalent to the 15.9-percentile.
By setting the mainstreaminess threshold to this point, we intend to omit the majority
of users and hence, only consider the 15.9% of users with the lowest mainstreaminess
scores. Utilizing this upper bound on the mainstreaminess score, we obtain a set of 2,074
beyond-mainstream users. Furthermore, the Gaussian assumption can be strengthened
by the observation that the 2,074 beyond-mainstream users represent 16.19% of users.
In the remainder of this paper, we refer to this set of beyond-mainstream music listeners
as BeyMS.
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Figure 9.4.: Mainstreaminess distribution of the 12,814 users illustrated in Figure 9.3.
Based on the maximum gradient, we select an upper bound of 0.097732 to identify the
2,074 beyond-mainstream users of the BeyMS user group.

9.3.4. Identifying Beyond-Mainstream Music

We aim to study beyond-mainstream listeners in terms of their music taste. We charac-
terize music via its acoustic features, as described in Section 9.3.1, and also investigate
genres as an alternative way to describe a music track via conventional categories. As the
LFM-1b dataset does not contain genre annotations of tracks and the Spotify API only
provides genres on artist level”, we leverage the tags assigned to each track by Last.fm
users to identify genre annotations. To obtain these tags, we use the respective Last.fm
API endpoint®. After having fetched the tags for each track, we de-capitalize them and
remove all non-alpha-numeric characters. Since not all tags used by Last.fm users corre-
spond to actual music genres (e.g., the “seenlive” tag is used to indicate that a user has
seen an artist performing this track live), we use a fine-grained music genre taxonomy
consisting of 3,034 genres that are also utilized by Spotify, which we gather from the

"https://developer.spotify.com/documentation/web-api/reference-beta/#endpoint-get-an-
artist
Shttps://www.last.fm/api/show/track.getTopTags
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EveryNoise service (2019-07-24)%. Specifically, for each track listened to by any of our
BeyMS users, we remove all tags that are not part of the EveryNoise genre taxonomy,
using a case-insensitive matching approach.

We note that Last.fm users tend to assign very general genre tags to a large number of
tracks, such as “pop” or “rock”. To remove these coarse-grained genres and to identify fine-
grained beyond-mainstream music genres, we calculate the inverse document frequency
(IDF) [440] metric of our genre-track distribution by treating genres as terms and tracks
as documents, i.e., IDF(g) = logg m. More precisely, the IDF-score of
genre ¢ is determined by relating the number of all tracks |T'| to the number of tracks
annotated with genre g where |G| is the set of genres assigned to track t. This way,
a coarse-grained genre receives a small IDF-score, while a fine-grained genre receives a
high IDF-score. Figure 9.5 shows the IDF-score distribution of the top-100 genres in
ascending order (i.e., from coarse-grained to fine-grained). Here, we identify two groups
of genres, where the first group consists of 6 genres with small IDF-scores, and the second
group consists of 94 genres with high IDF-scores. The visual inspection of Figure 9.5
indicates that the lower bound of 0.90 serves as a discriminant between these two groups
of coarse-grained and fine-grained genres. Consequently, we remove the 6 coarse-grained
genres (i.e., “rock”, “pop”, “electronic”, “metal”, “alternativerock”, “indierock”) from the
genre assignments of our tracks, which leads to 157,444 out of 799,659 tracks listened to
by BeyMS users with at least one remaining genre. In total, these tracks are annotated
with 1,418 unique genre identifiers.

We are aware of the fact to our track filtering procedure leads to incomplete listening
profiles of users. Since we rely on genres to describe beyond-mainstream music, these
filtering steps are necessary for our study. To ensure that the BeyMS users’ reduced
listening profiles are still representative of their music preferences, we further investigate
the consequences of the filtering procedure. Here, we find that a user’s listening history
(i.e., the entirety of a user’s listening events) is reduced to 61% on average. However, we
also find that there are only 62 of the 2,074 BeyMS users, for whom the listening history
is reduced to less than 20%. For these users most affected by the filtering, we compare
the acoustic feature distributions of their listened tracks before and after the filtering
steps, and find that filtering only marginally affects the acoustic feature distributions
(i.e., average change in mean = 0.0098 + 0.0148). This means that the acoustic feature
distribution contained in the user’s profile is highly robust against the filtering. The
statistics of BeyMS are summarized in column “ BeyMS” in Table 9.1.

9.3.5. Recommendations for Beyond-Mainstream Music Listeners

In order to compare the recommendation accuracy of recommendations received by the
users of our BeyMS group and by mainstream users, we construct a dataset consisting of
BeyMS'’s listening events and the listening events of an equally-sized group of mainstream

Shttp://everynoise.com/
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Figure 9.5.: IDF-score distribution of the top-100 genres in ascending order (i.e., from
coarse-grained to fine-grained). The 6 coarse-grained genres below the lower bound of

0.90 are removed from the genre assignments, i.e., “rock”, “pop”, “electronic”’, “metal”,
“alternativerock”, “indierock”.

users. Therefore, we define the MS user group as 2,074 (i.e., the size of our BeyMS group)
randomly-chosen users with a mainstreaminess score that is higher than the upper bound
for low mainstreaminess, identified in Figure 9.4. Furthermore, the MS users are also
in between the lower and upper bounds for listening events identified in Figure 9.3. As
shown in Table 9.1 (column “Recommendation”), the dataset used for the evaluation of
recommendations contains data of 4,148 distinct BeyMS and MS users, 1,084,922 distinct
tracks, and 16,687,363 listening events.

We use the Python-based open-source recommendation library Surprise!” to compute and
evaluate recommendations. One advantage of using Surprise is that it provides built-in
recommendation algorithms as well as a standardized evaluation pipeline, which enhances
the reproducibility of our research. Since Surprise is focused on rating prediction, we
formulate our music recommendation scenario also as a rating prediction problem, in
which we predict the preference of a target user u for a target track ¢. As done in [409],
we model the preference of ¢ for u by scaling the play count (i.e., number of listening
events) of ¢ by u to a range of [1; 1,000] using min-max normalization. We perform
this normalization on the individual user level to ensure that all users share the same

Ohttp://surpriselib.com/
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User group UserltemAvg UserKNN  UserKNNAvg NMF

BeyMS 63.4608*** 71.6694%**  G7.5770%** 57.7703%**
MS 61.2562 68.4894 63.3985 54.8182
Overall 62.2315 69.8962 65.2469 56.2492

Table 9.2.: Mean absolute error (MAE) results for the two user groups MS and BeyMS of

different mainstreaminess and a selection of standard recommendation algorithms. A one-

tailed Mann-Whitney-U test (o = .0001) provides significant evidence, indicated by ***

that all algorithms perform worse on BeyMS than on MS in terms of MAE. Furthermore,

NMF (as shown in bold) outperforms the other three approaches UserltemAvg, UserKNN
and UserKNNAvg.

preference value ranges. Thus, with this method, we ensure that each user’s most listened
track has a preference value of 1,000, while their least listened track has a preference value
of 1. To ensure that this min-max normalization procedure does not disrupt the play
count distribution of our users, we compare the original play count distribution with
the normalized distribution and find that both distributions are strongly right-skewed.
Specifically, we find very similar distributions for large amounts of our play count data.

We utilize a selection of Suprise’s built-in recommendation methods consisting of one
baseline approach (i.e., UserltemAvg), two neighborhood-based approaches (i.e., UserKNN
and UserKNNAvg), and one matrix factorization-based approach (i.e., NMF). Specifi-
cally, UserltemAvg predicts the average play count in the dataset by also accounting for
deviations of u and t, for example, if a user u tends to have more listening events than
the average Last.fm user [259]. UserKNN [190] is a user-based collaborative filtering ap-
proach and is calculated using k£ = 40 nearest neighbors and the cosine similarity metric,
which are the default settings of Surprise. UserKNNAvg is an extension of UserKNN [190]
that also takes the average rating of target user u into account. Finally, NMF, i.e., non-
negative matrix factorization [302]|, is calculated using 15 latent factors, which is the
default parameter in the Surprise library. As shown in our previous work [279], NMF is
also capable of recommending non-popular items from the long tail and should therefore
especially be of interest for our beyond-mainstream recommendation setting.

We use Surprise’s default parameters and refrain from performing any hyperparameter
tuning since we are only interested in assessing (relative) performance differences between
the two user groups BeyMS and MS, and not in outperforming any state-of-the-art
algorithm. This is also the reason why we focus on traditional algorithms instead of
investigating the most recent deep learning architectures, which would also require a
much higher computational effort.

The resulting mean absolute error (MAE) results can be observed in Table 9.2 (and
correspond to the ones already shown in Figure 9.1). We favor MAE over the commonly
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used root mean squared error (RMSE) due to several pitfalls, especially regarding the
comparison of groups with different numbers of observations [485|. Here, we perform
5-fold cross-validation leading to 5 different 80/20 train-test splits and average the MAE
over the 5 folds. NMF clearly outperforms UserltemAvg as well as the two neighborhood-
based methods (i.e., UserKNN and UserKNNAvg) both for the two user groups (see
rows “BeyMS” and “MS”) separately and overall without distinguishing between the
user groups (see row “Overall”). Additionally, we conduct a one-tailed Mann-Whitney-U
test (a = .0001), where we define the null-hypothesis as the MAE for MS being larger
than or equal to the MAE for BeyMS. Results marked with *** indicate that the null-
hypothesis was rejected for every fold. Thus, all algorithms (including NMF) provide
a significantly larger error for BeyMS than for MS. In other words, recommendation
quality is significantly better for users with mainstream taste than for users who prefer
beyond-mainstream music across all recommendation approaches.

These initial results underpin the need to study the characteristics of the BeyMS user
group that receives worse recommendations. The corresponding experiments are pre-
sented in the next section.

9.4. Characteristics of Beyond-Mainstream Music and
Listeners

We identify the types of beyond-mainstream music using unsupervised clustering and
characterize these types with respect to acoustic features and music genres. Besides,
we detect subgroups of beyond-mainstream music listeners by assigning users to these
clusters and evaluate the recommendation quality obtained for these subgroups. Finally,
we discuss the recommendation quality with respect to openness and diversity. For this,
we relate to the definitions given by [460]:

Openness is the across-groups diversity (or categorical diversity) and describes if users
of one group also listen to the music of other groups.

Diversity is the within-groups diversity (or thematic diversity) and describes the dissim-
ilarity of music listened to by users within groups.

Based on the findings of [460], we would expect that subgroups with high openness should
receive more accurate recommendations than subgroups with high diversity.

9.4.1. Clustering and Characterizing Beyond-Mainstream Music

To study the different types of music listened to by the users in our BeyMS group,
we conduct a cluster analysis. Specifically, we cluster the 157,444 tracks listened to by
BeyMS' users, where each track is described by the eight acoustic features danceabil-
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Figure 9.6.: Music clustering results obtained with HDBSCAN* and UMAP for the 2-

dimensional mapping. The outputs are four clusters with the following cluster sizes:

12,148 (blue, hatch: /), 92,798 (green, hatch: +), 7,629 (orange, hatch: o) and 30,379

(pink, hatch: x) tracks. 14,490 of our 157,444 BeyMS tracks have not been assigned to
a cluster.

ity, energy, speechiness, acousticness, instrumentalness, tempo, valence, and liveness (see
Section 9.3.1). We scale the value ranges of these features to [0, 1] using min-max normal-
ization. The use of latent representations of musical elements such as tracks was shown
to be efficient in the area of music information retrieval [92, 280, 508|. Furthermore,
for visually analyzing the obtained music clusters and decreasing computation time, we
favor a reduction of dimensionality to two dimensions.

We conduct experiments with a broad body of dimensionality reduction methods, i.e.,
linear and nonlinear principal component analysis (PCA) [462], locally linear embed-
ding [389], multidimensional scaling [268], Isomap [457]|, spectral embedding [332], t-
distributed stochastic neighbor embedding (t-SNE) [471] and uniform manifold approx-
imation and projection (UMAP) [311]. We visually inspected the 2-dimensional feature
spaces created by these methods with regards to the clustering quality, and we obtained
the visually most homogeneous results with UMAP. Moreover, UMAP has already been
successfully used in the music domain [508| and thus, we use it for the remainder of our
experiments. Specifically, we utilize the open-source implementation of UMAP [311],
which requires four parameters: (i) the distance metric M in the input space, (ii) the
number of latent dimensions D, (iii) the minimum distance of points in the latent space
dpmin, and (iv) the number of neighbors of a point N. Based on experimentation and
related literature (e.g., [311]), we set the distance metric M to the Euclidean distance,
the number of latent dimensions D to 2, the distance d,,;, to 0.1 and the number of
neighbors N to 15.
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In a next step, we perform clustering on the dimensionality-reduced acoustic features
of tracks. Again, we conduct experiments with various clustering methods, i.e., DB-
SCAN [489], K-Means [51], Gaussian mixture models [380], affinity propagation [153],
spectral clustering [432], hierarchical agglomerative clustering [327], OPTICS [26] and
HDBSCAN* [309]. Here, we obtain the best results with respect to cluster cohesion
and separation using HDBSCAN*. Furthermore, HDBSCAN* was also already used by
related work to cluster music items [499]. We employ the open-source implementation
of HDBSCAN* [310] that requires four parameters: (i) the minimum cluster size S
that defines the minimum size of a group of points to consider a cluster, (ii) the mini-
mum number of samples in the neighborhood of a core point Ny,;,, which quantifies how
conservative the clustering is, (iii) £, which enables the recovery of DBSCAN clusters if
the Spin value is not reached, and (iv) the scaling of the distance «, which is another
measure of the clustering’s conservativeness. In detail, « scales the distance between two
points, which determines whether these points are merged into a cluster. This scaling
is used in the construction of HDBSCAN™*’s hierarchy of clusterings. Again, we find
the best-suited parameters based on experimentation and related literature (e.g., [309]).
Specifically, we require each cluster to comprise a sufficiently large number of tracks to
increase the level of significance of our subsequent experiments. We expect the existence
of very small music clusters and thus, search for the optimal value of the minimal cluster
size Smin in the search space of {1,000;1,025;...;1,475;1,500}, where we obtain the best
results with respect to the within-cluster variance for s,,;, = 1,375. Furthermore, tightly
packed clusters without any contribution of noise should be favored. In other words, all
points within a cluster should be within the neighborhood of at least one core point.
Thus, we set the minimal number of samples in the neighborhood N,in = Smin = 1, 375.
The remaining two parameters are set to their default values, i.e., ¢ = 0 and o = 1.

Figure 9.6 shows the results of the clustering process using HDBSCAN* and UMAP for
the 2-dimensional mapping. This process leads to four music clusters. Here, the green
cluster (hatch: +) is the largest one with 92,798 tracks, followed by the pink cluster
(hatch: x) with 30,379 tracks and the blue cluster (hatch: /) with 12,148 tracks. The
smallest cluster is the orange one (hatch: o) as it contains 7,629 tracks. The remaining
14,490 of our 157,444 BeyMS tracks have not been assigned to a cluster and thus, will
not be included in further analyses and interpretations. Next, we describe how we name
these clusters based on their music genre distributions.

Genre Distributions

In Figure 9.7, we illustrate the top-10 genres of the four music clusters. For this, we
refer to the genre IDF-scores presented in Section 9.3.4 and weight each genre assigned
to a track in a cluster with its corresponding IDF-score. For example, if a genre with an
IDF-score of 1.4 is assigned to 1,000 tracks in a cluster, it is visualized as an aggregated
genre IDF-score of 1,400 in the corresponding plot of Figure 9.7. Based on the genre
distributions, we label each cluster according to its top genre.
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Figure 9.7.: Top-10 genres of the four music clusters C1—C4 according to the aggregated

genre IDF-scores. We name the clusters according to the top genre, i.e., (a) blue (hatch:

/) = Crou (“folk”), (b) green (hatch: +) — Chqrq (“hardrock”), (c) orange (hatch: o) —
Coampi (“ambient”), and (d) pink (hatch: x) — Ceje. (“electronica”).

With respect to the blue cluster (hatch: /) in Plot (a), we find top genres such as
“folk” and “singersongwriter”, which typically reflect music with high acousticness. In
the remainder of this paper, therefore, we refer to this cluster as Cq;. The top genres
of the green cluster (hatch: +) in Plot (b) are typical high energy music genres such as
“hardrock”, “punk”, “poprock”, and “hiphop”. Based on this, we name this cluster Chgq.

For the orange cluster (hatch: o) in Plot (c), we find genres that reflect music with
high acousticness and high instrumentalness such as “ambient”, “experimental”, “newage”,
and “postrock”. As “ambient” clearly dominates the genre distribution for this cluster,
we name this cluster Cgp;. Similarly to Cprep, this cluster contains music with high
acousticness; yet, while Cy is characterized by low instrumentalness music, Cypp; is
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Figure 9.8.: Relative genre frequency distribution of the four music clusters. While there
are dominating genres in C'tqp and Copmpi, the genre distribution is more diverse in Chqrg
and Cyjee.

characterized by a high level of instrumentalness. Finally, Plot (d) shows the genre
distribution of the pink cluster (hatch: x) with “electronica” as the top genre, which
leads to the name Cg.. for this cluster.

Thus, both, Cgjee and Chgrq, consist of high energy music but in contrast to Cherd, Celec
also comprise high instrumentalness values. This also makes sense when looking at other
top genres of Cgje. such as “deathmetal” and “blackmetal” where guttural vocal techniques
are often mistakenly classified as another type of instrument [500].

To compare the genre distributions among the four music clusters, we illustrate the
relative genre frequency distribution of the clusters in Figure 9.8. The relative frequency
of a genre g depicts the fraction of listening events of tracks within a cluster ¢ that are
annotated with g. Here, we only show genres with a minimum relative genre frequency
of 0.1. We see that there are clearly dominating genres in Co and Cgmpi, Whereas
the genre distributions in Cpg.q and Cgee. are more evenly distributed. When relating
this finding to the findings of Figure 9.7, we clearly see that the results correspond to
each other: Chgrqg and Cpjee contain a more diverse genre spectrum (e.g., “hardrock” and
“hiphop” are both part of Chapq’s top genres) than Cjo and Compi (€.8., in Campi’s top
genres, we find “ambient” and “darkambient”).
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Acoustic Feature Distributions

To understand the musical content of these four music clusters, we analyze the acoustic
feature distributions of the four music clusters using boxplots in Figure 9.9. This visu-
alization does not show any obvious differences with respect to danceability and tempo
among the four clusters. For the acoustic features energy, speechiness, acousticness, va-
lence, and liveness, there are similar values for the cluster pairs Cpy and Coppi, and
Chard and Cge.. We observe differences between these two cluster pairs with respect to
energy and acousticness. While Cjrq and Ceje. provide high energy values and small
acousticness values, Crop and Cypyp; feature small energy values and high acousticness
values.

In contrast, for instrumentalness, we see similar values for the cluster pairs Cfq, and
Chard as well as for Cyppi and Cee.. We observe very high values for Cgp; and Cope,
and very small values for Ctq and Cherq. This difference is also visible in Figure 9.6
in the form of the gap between Cyy, and Chgrq on the left, and Cypp and Ceee on the
right.

Summing up, in Cpep, we find music with low energy, high acousticness, and low in-
strumentalness; Chgrg contains music with high energy, low acousticness, and low in-
strumentalness; in Cy,,p;, We observe music with low energy, high acousticness, and high
instrumentalness; and in Cgje., we find high energy, low acousticness, and high instru-
mentalness. Thus, these findings are in line with the genre distributions presented in
Figure 9.7.

9.4.2. Assigning and Studying Beyond-Mainstream Music Listeners

In the next step, we assign the 2,074 BeyMS users to the four music clusters to categorize
them into four distinct beyond-mainstream subgroups for further analyses.

For each user u, we count the number of listening events LF, . that u has contributed
to the tracks in each cluster ¢, where ¢ € C' = {Cyok, Chard, Cambi> Cetec}- Then, we
assign u to the cluster ¢ for which the number of contributed listening events LE, . is
the highest. However, because we have varying cluster sizes, the probability of u listening
to a track t of the two larger clusters Chgrq and Coe. is much higher than for the two
smaller clusters Cro and Cyppi, although Cro and Cyypps could be more representative
choices for w. Thus, similar to the IDF distribution of genres (see Figure 9.5), we take
advantage of the IDF scoring to reduce the influence of the larger clusters and to assign
higher weights to the smaller clusters. Specifically, these cluster IDF-scores are given by
IDF(c) = logy %, i.e., by relating the number of all tracks |T'| to the number
of tracks in cluster ¢ where ¢; is the music cluster assigned to track . That lets us define
the user—cluster weight w,, . for user u and cluster ¢ as wy,. = IDF(c) - LE, .
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Figure 9.9.: Distribution of the eight acoustic features for the four music clusters. While
the clusters do not show obvious differences with respect to danceability and tempo, we
find large differences with respect to energy, acousticness and instrumentalness.
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Subgroup | [U| Al [T |LE| |G|, |LEJ [T Age (std.)
Ufolk 369 9,559 72,663 702,635 811 | 1,904.160 549.650 | 27.599 (+ 10.369)
Unard 919 11,966 107,952 2,150,246 1,274 | 2,339.767 557.470 23.867 (i 8.912)
Uambi 143 6,869 39,649 224.327 918 | 1,568.720 473.308 | 29.571 (+ 14.138)
Uelec 642 11,814 105,907 1,416,354 1,005 | 2,206.159 670.402 24.639 (+ 7.886)

Table 9.3.: Descriptive statistics of the four subgroups. Here, |U]| is the number of users,

|A] is the number of artists, |T'| is the number of tracks, |LE| is the number of listening

events, |G| is the number of genres, |LE,| is the average number of listening events per

user, |T,| is the average number of tracks per user and Age is the average age (along
with the standard deviation) of users in the group.

Consequently, users are assigned to the highest weighted music cluster and thus, a sub-
group U, for cluster c is given by U, = {u € U : arg max c(wy)}-

Out of the 2,074 BeyM S users, we can assign 2,073 users to these subgroups. Thus, only
1 user listened to tracks not contained in any cluster in Figure 9.6. Similar to the naming
scheme of music clusters, we label the subgroups according to the name of their assigned
music cluster. Hence, we obtain four subgroups Upoik, Unards Uambi, and Ugec.

Table 9.3 provides basic descriptive statistics of these four resulting subgroups. Here,
Uhara is the largest subgroup with |U| = 919 users, followed by Uge. with |U| = 642
users, Uy, with [U| = 369 users, and Ugypp; with |U| = 143 users. The differences with
respect to the number of users also correspond to the differences regarding the number of
artists |A|, the number of tracks |T'|, and the number of listening events |LE| contained
in the clusters. In the case of the number of genres |G|, this differs slightly because the
users in the smaller Uppp, cluster listen to more genres (i.e., 918) than the bigger Uy
cluster (i.e., 811). This indicates that the users in Uy, listen to a broader set of music
than the users in Ugqy,.

Considering the average number of listening events per user (i.e., |LE,|) and the average
number of tracks per user (i.e., |T,|), we see that, while there is little difference between
Uhara and Ugje with respect to |LE,|, m is much higher for U, (i.e., 670.402) than
for Upgrq (i-€., 557.470). This indicates that, although the number of listening events is
nearly the same, users of Uge. tend to listen to a wider set of tracks than users of Upgq.
With respect to the average age of the users Age, we see that the users of U folk and
Uampi are the oldest ones, and users of Upgrq and Uge. are the youngest ones. However,
it is worth noting that the group with the highest average age (i.e., Ugmp;) also shows by
far the highest standard deviation of age (i.e., 14.138 years).

In Figure 9.10, we show the contribution of each music cluster to each subgroup in the
form of a radar plot. For this, we use the user-cluster weights w, . introduced before
and calculate the average weight over all users in cluster ¢. One consequence of the IDF
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Figure 9.10.: Radar plot illustrating the contribution of each music cluster to a subgroup.

While the weight distribution of Upgrg and Ugje. is rather narrow, it is more broad in

case of Uy and Ugpmp; suggesting that these groups are more open to music outside the
own music cluster.

scoring applied to wy, . is that the weight contributions of a user group to the four clusters
does not sum up to 1, which eventually influences the interpretation of the values shown
in Figure 9.10. However, in return, these values account for the varying cluster sizes and
can also be interpreted as preference weights for a user group towards a specific music
cluster.

We observe that the weight distribution of the two larger subgroups Uperq and Ugjee 18
rather narrow, which indicates that these users do not listen to many tracks of other
clusters. Contrary to that, the weights of the two smaller subgroups Uyoi and Ugpp; are
more broadly distributed over the four music clusters. This suggests that users of Uy
and Uy, are more open to music outside of their own music cluster than users of Upgq
and Ugjee.

Correlation of Music Clusters and Beyond-Mainstream Subgroups

To better understand the correlations and connections between the music clusters and
subgroups, we plot the Pearson correlation matrix of the four music clusters as a heatmap
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Figure 9.11.: Pearson correlation matrix of the four music clusters. While Chgrq has

solely negative correlations with all other clusters, and thus, listeners of Chg-g sSeem to

be the most closed subgroup, Cympi has positive correlations with Cfop, and Ceee, and
thus, listeners of C,,,p; seem to be the most open subgroup.

in Figure 9.11. Here, we represent each music cluster ¢ by a 2,073-dimensional vector (i.e.,
one entry for each user) consisting of the user—cluster weights w, ., introduced before.
Each element in the matrix is then calculated using the Pearson correlation measure
based on these cluster vectors. For example, if there is a positive correlation between
two clusters, we assume that a user who enjoys music from the one cluster likely also
enjoys music from the other cluster. This can give us also an indication of the openness
of a subgroup for music mainly listened to by other subgroups. Specifically, for C'ty, we
see a positive correlation between Cyx and Cympi, and a negative correlation between
Ctor and both, Cherqg as well as Cejee. Users listening to the music of Chgpq seem to
represent the most closed subgroup as Cjrq because it solely has negative correlations
with all other clusters, especially with Cy,.p; and Cge.. In contrast, users listening to
the music of Cgppi seem to represent the most open subgroup as Cgunp has positive
correlations with two other clusters, i.e., Ctop and Cge.. The fourth cluster, Cgp., is
negatively correlated with Cfo, and especially with Cjq,q, and positively correlated with
Campi- These results are also in line with the ones shown in Figure 9.10, in which we
identify the users of Ugmnp; as more open music listeners than the ones of Upgpqg.

In order to relate the openness of the subgroups to the diversity of the users within the
subgroups, we calculate the average pairwise user similarity using the cosine similarity
metric computed on the users’ genre distributions, i.e., number of listening events per
genre. Figure 9.12 shows the resulting boxplots for the four identified subgroups (i.e.,
Ctolk, Chards Campi, and Ceiee). Figure 9.12 shows that users in Upgrq and Uge. have a
rather small average pairwise user similarity and, thus, exhibit a more diverse listening
behavior, whereas users in Ufq, and Ugpp; tend to listen to more similar music genres and,
thus, have a narrow listening behavior within the group. Summed up, we find pronounced
differences with respect to openness and diversity across the subgroups. Although U,
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Figure 9.12.: Boxplots showing the average pairwise user similarity of the four subgroups

using the cosine similarity calculated on the users’ genre distributions. While the users

in Upgrq and Ugee exhibit a more diverse listening behavior, users in Uy and Ugpp;
tend to listen to more similar, i.e., less diverse, music genres.

is the most open subgroup (i.e., also listens to music of other subgroups), it is also the
least diverse subgroup (i.e., the users within the group listen to very similar music). That
observation is in line with what is shown in Figures 9.7, and Figure 9.8. Here, we see that
Clampi, 1.€., the most tightly connected music cluster to Ugmpi, contains the dominating
genre “ambient” as well as genres that are strongly associated with this dominating genre
(e.g., “darkambient”). For Upgrq, we observe the opposite. While it is the least open
subgroup, it is also the most diverse one (e.g., it contains “hardrock” as well as “hiphop”
listeners).

Recommendations for Beyond-Mainstream User Subgroups

In Section 9.3.5, we have shown that the recommendation accuracy of four personalized
recommendation algorithms is significantly worse for BeyMS users than for MS users.
Now, we extend this analysis and evaluate the recommendation accuracy of these algo-
rithms for the four subgroups (i.e., Uik, Unard; Uampi, and Uegec)-

Table 9.4 shows our results with respect to the mean absolute error (MAE). Additionally,
we analyze these results with respect to statistically significant differences in Table 9.5
by performing ANOVA (a = .01) and a subsequent Tukey-HSD test (v = .05). Here, we
report pairwise differences as significant (marked with **), if both ANOVA and Tukey-
HSD were significant across all five folds (see Section 9.3.5 for details on the experimental
setup).
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Subgroup UserltemAvg UserKNN  UserKNNAvg NMF

Ufolk 63.2143 70.3049 67.4406 57.2278
Uhara 65.1464 73.1949 69.2855 59.6887
Uambi 60.5558 69.8315 65.5708 54.2073
Uclec 62.2894 71.0387 66.1499 56.6209
BeyMS 63.4608 71.6694 67.5856 57.7703
MS 61.2562 68.4894 63.3985 54.8182

Table 9.4.: Mean absolute error (MAE) measurements for the four subgroups and four

personalized recommendation algorithms. NMF (in bold) outperforms all other algo-

rithms for all subgroups. Among the subgroups, the best accuracy results (i.e., lowest

MAE scores) are reached by Ugppi, while the worst accuracy results (i.e., highest MAE

scores) are reached by Upgrq. To facilitate comparison, we also show the MAE measure-
ments for the BeyMS and MS user groups.

We see that among all algorithms, the significantly worst accuracy results (i.e., the highest
MAE scores) are achieved for the Upqrq subgroup. Next, Ugoi, Ugmpi and Ugee reach
significantly better (i.e., lower MAE scores) than Upg,.q for all algorithms. However, there
is no statistically significant difference between the recommendation accuracy of Uy
and Ugee. The overall best accuracy results (i.e., lowest MAE scores) are reached for
the Ugmp; subgroup. These results are also statistically significant when compared with
the other subgroups for the NMF algorithm. NMF also gives the overall best accuracy
results for all subgroups, which is in line with our results presented in Section 9.3.5 and
in our previous work [279].

Furthermore, we find a relationship between openness, diversity, and recommendation
quality. Here, Upqrq is the least open but most diverse subgroup and gets the worst rec-
ommendations, while Ug,,p; is the most open but least diverse subgroup and gets the best
recommendations. This is in line with the findings of [460], who have shown that users are
more likely to accept recommendations from different groups (i.e., openness) rather than
varied within a group (i.e., diversity). Thus, we find a relationship between the quality of
recommendations provided to beyond-mainstream music listeners and openness as well
as diversity patterns of these users.

Finally, in Figure 9.13, we visually compare the MAE scores reached by the best per-
forming approach NMF for the four subgroups. Additionally, we depict the MAE score
for BeyMS as a black dashed line and the MAE score for MS as a grey dashed line. We
see that Upqrq reaches worse results than BeyMS while Uy qx and U, reach slightly bet-
ter results than BeyMS. Interestingly, Ugyp; not only reaches better results than BeyMS
but also better results than MS. Although this improvement over MS is not statistically
significant (according to a one-tailed Mann-Whitney-U test with o = .0001), it shows
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UserltemAvg UserKNN UserKNNAvg NMF
Subgroup | Useir;  Unarda  Uambi  Uetee | Usot Unara  Uambi Uetee | Usote Unarda Uambi Uetee | Usot Unard  Uambi  Uetee
Ufolk Kk Kk *k Kk Kk Kk
Unard sk sk sk sk sk sk $k $k sk sk sk sk
Uambi oK Hx kk *k Kk sk Sk
Uetee o Hok *% sk sk

Table 9.5.: Statistically significant differences between pairs of subgroups, as determined
by ANOVA (a = .01) and a subsequent Tukey-HSD test (o = .05).
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Figure 9.13.: Comparison of the mean absolute error (MAE) scores reached by NMF for

the four subgroups with the ones reached by NMF for BeyMS (black dashed line) and

MS (grey dashed line). While specific subgroups (i.e., Upqrq) are treated in an unfair
way by recommendation algorithms, others (i.e., Ugmp;) are not.

that there is a large variety among BeyMS users, where specific subgroups (i.e., Ungrq)
are disadvantaged in terms of recommendation accuracy by recommendation algorithms
while others (i.e., Ugmp;) are not.

9.5. Conclusions and Future Work

In this paper, we shed light on the characteristics of beyond-mainstream music and music
listeners. As our first contribution, we identified 2,074 beyond-mainstream music listeners
(i.e., BeyMS) in the Last.fm platform, and subsequently created a novel dataset called
LFM-BeyMS based on the listening histories of these users. We further enriched this
dataset with (i) acoustic features of music tracks gathered from Spotify, and (ii) genre
information of tracks derived from Last.fm tags and matched with the Spotify microgenre
taxonomy. Additionally, for reasons of comparability, LFM-BeyMS contains data of
2,074 Last.fm users listening to mainstream music. Using this dataset, as our second
contribution, we validated related research by showing that beyond-mainstream music
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listeners receive a significantly lower recommendation accuracy than mainstream music
listeners by four standard recommendation algorithms (i.e., UserltemAvg, UserKNN;,

UserKNNAvg and NMF).

As our third contribution, we applied the clustering algorithm HDBSCAN* on the acous-
tic features of tracks listened by BeyMS and identified four clusters of beyond-mainstream
music: (1) Cox, music with high acousticness such as “folk”, (ii) Chqrq, high energy mu-
sic such as “hardrock”, (iii) Cgmpi, music with high acousticness and instrumentalness
such as “ambient”, and (iv) Cejee, music with high energy and instrumentalness such as
“electronica”.

As our fourth contribution, we mapped these clusters to our BeyMS users, which led to
four beyond-mainstream subgroups: (i) Ufo, (ii) Unard, (iii) Ugmpi, and (iv) Ugec. We
analyzed these subgroups with respect to their openness (i.e., across-groups diversity —
do users of one group listen to music of other groups?) and diversity (i.e., within-groups
diversity — how dissimilar is the music listened to by users within groups?). Here, we
found large differences between Upgrqg and Ugmpi. Although Upgrq is the most closed sub-
group (i.e., users do not listen to music of other subgroups), it is also the most diverse
subgroup (i.e., users listen to a diverse set of genres such as “hardrock” and “hiphop”).
For Ugmpi, we get opposite results: while it is the most open subgroup (i.e., users listen
to music of other subgroups as well), it is also the least diverse one (i.e., the users within
the group listen to very similar music such as “ambient” and “darkambient”). We related
these characteristics of the subgroups to the recommendation quality of the four recom-
mendation algorithms UserltemAvg, UserKNN, UserKNNAvg and NMF. Here, we found
that Upgrq got music recommendations with lowest accuracy, while Ug;,p; got music rec-
ommendations with highest accuracy. This is in line with related research [460], which
has shown that openness is stronger correlated with accurate recommendations than di-
versity. Ugmpi even received better recommendations than the group of mainstream music
listeners. This result highlights that there are large differences between the subgroups of
beyond-music listeners. Finally, to foster reproducibility of our research, we provide our
novel LFM-BeyMS dataset via Zenodo as well as our source code via Github.

We believe that our findings provide useful insights for creating user models and recom-
mendation algorithms that better serve beyond-mainstream music listeners. As it was
shown in [279], beyond-mainstream music listeners tend to have larger user profile sizes
than users interested in mainstream music, which means that they provide a substan-
tial amount of listening interaction data for services such as Last.fm and Spotify. We
assume that improving the recommendation quality for this active user group also leads
to another effect, namely a more prominent exposure of (long-tail) music artists due to a
better-connected recommendation network [271]. We leave such investigations to future
work.

159



9. Characteristics of Beyond-Mainstream Music Listeners

Limitations and future work. Despite the merits of this work, we are aware of its limi-
tations. The first limitation we recognize is that our analyses are based on a sample of
the Last.fm community. The extent to which their listening behavior is representative of
the Last.fm community at large, or similar music streaming communities such as Spotify,
needs further investigation.

Next, since we conducted a comparative study of the accuracy of recommender systems
algorithms—and were therefore not interested to beat state-of-the-art algorithms—we
focused on traditional algorithms (e.g., KNN-based collaborative filtering) instead of
investigating the most current deep learning architectures, which would also require a
much higher computational effort. Furthermore, an award-winning-paper by Dacrema et
al. [144] has recently shown that traditional algorithms are able to outperform almost all
deep learning architectures.

While our work serves as a first milestone towards better characterizing beyond-mainstream
music and listeners of such music, future work should focus on user modeling techniques to
individually target the different subgroups, for example by integrating knowledge about
openness and diversity. With respect to analyzing openness and diversity of users and
user groups, we would also like to work on a more formal definition of these dimensions,
which would not only allow us to measure them more precisely but also to integrate them
into the recommendation calculation process.

Additionally, since previous research has shown that the listener’s cultural background
impacts the quality of music recommendations [512|, we plan to compare the cultural
and socioeconomic aspects of beyond-mainstream and mainstream music listeners. We
plan to employ these aspects by means of Hofstede’s cultural dimensions [193] and the
World Happiness Report [187].

Finally, another avenue for future work is the research in the area of fair music recom-
mender systems. Here, we plan to build user models that are capable of accounting
for the complex characteristics of beyond-mainstream music listeners presented in this
paper. While we believe that more specialized user models could help to provide better
recommendations for users who currently receive worse recommendations (e.g., the Upgrq
subgroup identified in this paper), we also aim to highlight that such user models still
need to be generalizable to avoid any unfair treatment of other users. Hence, future
research should work on achieving a specialization-generalization trade-off in music rec-
ommender systems. We hope that our open LFM-BeyMS dataset as well as our source
code will be of use to the scientific community for subsequent analyses.
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Abstract

Recommender systems, like other tools that make use of machine learning, are known to
create or increase certain biases. Earlier work has already unveiled different performance
of recommender systems for different user groups, depending on gender, age, country,
and consumption behavior. In this work, we study user bias in terms of another aspect,
i.e., users’ personality. We investigate to which extent state-of-the-art recommendation
algorithms yield different accuracy scores depending on the users’ personality traits. We
focus on the music domain and create a dataset of Twitter users’ music consumption
behavior and personality traits, measuring the latter in terms of the OCEAN model.
Investigating recall@K and NDCG@K of the recommendation algorithms SLIM, embar-
rassingly shallow autoencoders for sparse data (EASE), and variational autoencoders
for collaborative filtering (Mult-VAE) on this dataset, we find several significant differ-
ences in performance between user groups scoring high vs. groups scoring low on several
personality traits.


https://doi.org/10.1145/3383313.3412223

10. Personality Bias of Music Recommendation Algorithms

10.1. Introduction

Recommender systems in the multimedia domain—in particular in the music domain—
have been shown to exhibit various kinds of biases, most notably on the item level (e.g.,
long-tail items are less frequently recommended [4, 78, 279]) and on the user level (e.g.,
users of a certain gender, belonging to a certain age group, or living in a certain country
receive recommendations of different quality [415]). However, one important user charac-
teristic that has not been studied yet under the perspective of recommender systems bias
is personality. Personality traits are stable over a longer period of time and can, there-
fore, be considered in a way similar to gender when it comes to investigating bias [100].
Against this background, we address the following research questions: Do state-of-the-art
recommender algorithms yield different performance scores for different user groups in
terms of personality traits? If so, how can these differences be characterized?

In the study presented here, we focus on the music domain since some personality traits
have already been shown to correlate with music preferences [377] and usage of music [84].
We, therefore, speculate that music listeners with different personality profiles might be
treated differently by music recommender systems.

In this paper, we present related literature (Section 10.2), detail our methodology and
data (Section 10.3), describe experimental setup and results (Section 10.4), present con-
clusions, limitations, and future research avenues (Section 10.5).

10.2. Related Work

Related literature can be categorized into recommender systems research that considers
personality in the recommendation process and research on bias and fairness of recom-
mender systems.

Personality traits are a psychological construct that remains stable over the years [100].
They are known to influence our preferences and consumption behaviors, e.g., towards
music [149]. Research that integrates users’ personality into the recommendation process
has emerged only recently, though [463|. The most common personality model adopted
in recommender systems research is the OCEAN model [305], which describes personality
traits along five dimensions: openness to experience (conventional vs. creative thinking),
conscientiousness (disorganized vs. organized behavior), extraversion (engagement with
the external world), agreeableness (need for social harmony), and neuroticism (emotional
instability).

While personality-aware recommender systems have been proposed in domains other
than music (e.g., movies [330], food/recipes [5], and computer games [490]), we focus our
discussion on music recommendation due to the scope of this paper. Lu and Tintarev
propose a system that adapts according to users’ personality traits and their diversity
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needs [300]. To this end, results of a collaborative filtering recommender are re-ranked
with respect to the level of diversity each item, i.e., song, contributes to the recommen-
dation list. Intra-list diversity is computed on item features such as music key, genre, and
number of artists. Based on previously identified correlates between personality traits
and diversity needs, the authors map each personality trait to a desired level of diver-
sity and integrate this information as weighting term into the objective function used for
re-ranking. Fernandez-Tobias et al. present different personality-aware recommender sys-
tems to alleviate the cold-start problem in book, movie, and music recommendation [142].
In particular, they propose a matrix factorization approach for model-based collaborative
filtering that integrates a user latent factor describing personality traits in terms of the
five dimensions of the OCEAN model.

The concept of fairness requires systems not to discriminate against either a group [351]
or individuals [128] in terms of recommendation quality. Establishing fairness typically
involves identifying discriminated individuals or groups and, subsequently, developing
algorithms that eliminate this discrimination [70]. Burke extended the concept of fairness
to multisided fairness, noting that recommender systems have to consider the interests
of all stakeholders of the system [68].

Recent research revealed a popularity bias in current recommendation algorithms. In
particular, it was shown that users are recommended items that do not match their
preference towards a certain popularity level (niche songs/artists are undervalued) [4,
279]. Ekstrand et al. investigated demographic biases in collaborative filtering scenarios
with regards to age and gender and found that biases do not necessarily correlate with
user group size [138]. Schedl et al. showed that users of different gender, age, and country
receive (music) recommendations of different quality [415]. Our work, in contrast, is the
first to investigate biases that may result from different personality traits.

10.3. Materials and Methods

In the following, we describe the creation of the used dataset (Section 10.3.1) and its com-
position (Section 10.3.2), the investigated recommendation algorithms (Section 10.3.3),
and the evaluation metrics we adopt (Section 10.3.4). We publicly release the dataset and
code needed to reproduce the experiments at https://github.com/CPJKU/pers_bias.

10.3.1. Data Acquisition

To obtain behavioral data on music consumption as well as information on users’ per-
sonality, we exploit microblogs shared on Twitter, and particularly leverage so-called
#nowplaying tweets in which users tweet about the music they are currently listening
to. Along the lines of [183, 509], we utilize #nowplaying tweets stemming from 2018
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and 2019 (256,705,566 tweets in total, gathered via the Twitter Streaming API,! search-
ing for the keywords #nowplaying, #listento, or #listeningto). To extract track and
artist information from those tweets, we use the MusicBrainz database? [450], an openly
available database of music metadata. It provides metadata on artists, recordings, re-
leases, etc., which is obtained through crowd-sourcing. For extracting artist names and
track titles from tweets, we firstly strip URLs, mentions, and hashtags from the tweet
text. Subsequently, we tokenize the text and identify the longest subsequence of tokens
that corresponds to an artist entry in the MusicBrainz database. If we detect a matching
artist, we remove the tokens constituting the artist name from the tweet and try to match
the remaining text to a track of the detected artist, again using MusicBrainz metadata.
If we cannot match a tweet against both, a track name and an artist name, we discard
it.

We further refine the dataset by heuristically removing alleged radio stations through a
careful check of the occurrence of certain words in the tweets, the number of shared links,
and the number of listening events (user—item interactions). We identify a set of words
hinting at radios (e.g., #listenlive and radio) and drop a “user” if at least half of their
tweets contain any of these words. Since radio stations tend to share many tweets with
links in it, we also drop a user if the majority of the user’s tweets contain at least one
link. Lastly, we remove all users above the 99.99% percentile of the number of listening
events as radios commonly create an exorbitant number of listening events.

To obtain personality information of the users, we query the Twitter API? to get their
most recent 1,000 tweets, excluding retweets.* Users with private or deleted profiles
are discarded. These tweets are then fed to the IBM Personality Insight API,> which
returns the personality estimates for each user according to the OCEAN model [305]
(cf. Section 10.2), scaled to [0,1] in terms of percentile ranges. To achieve the maximum
accuracy for trait prediction with the service,® we only keep users that tweet in English
and use more than 3,000 words across their tweets. Lastly, we drop users with fewer
than 5 listening events, as commonly done in related research [285, 406], and to enable
the evaluation protocol (80:20 training/test split) detailed in Section 10.4.1.

10.3.2. Dataset Description

The processing steps described above eventually lead to a final dataset comprising 395,056
total listening events, 18,310 users with personality values, and 15,753 unique tracks.

"https://developer.twitter.com/en/docs/tweets/filter-realtime/overview

’https://musicbrainz.org

3https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-
user_timeline

4Personality is assumed to be stable through time, so it is reasonable to use recent behavioral data to
predict personality traits.

"https://www.ibm.com/watson/services/personality-insights

Shttps://cloud.ibm.com/docs/personality-insights?topic=personality-thatut#sufficient
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Basic statistics on the behavioral data in our final dataset, i.e., related to user—item
interactions, can be found in Table 10.1. On the right side, a statistical summary of the
number of tracks per user (user playcounts) and the number of users per track (track
playcounts) is provided. The distribution of users’ personality traits among the [0,1]-
normalized scores is depicted in Figure 10.1, where the vertical lines denote the median
values. To assess whether users with different personality profiles are treated differently
by the mentioned approaches, we perform a median split over each personality trait,
thus, effectively, creating two groups of users for each trait: the high group, scoring
above the median, and the low group, scoring lower. Table 10.2 shows a set of statistics
for each personality trait (in the columns) and user group (high vs. low on that trait; in
the upper and lower part of the table, respectively). We observe that the total number
of unique tracks is quite similar, regardless of personality trait and user group (within
range [15,600, 15,700]), except for highly neurotic people who cover fewer items in their
listening habits. In terms of the number of listening events, except for neuroticism, the
high groups consistently show higher numbers, with a particularly pronounced difference
between high and low groups for the traits extraversion and openness. This does not seem
overly surprising since we expect that people who are extraverted and open to experience
will listen to (and share) more music than introverts and less open users.

No. LEs No. tracks No. users
395,056 15,753 18,310

Mean Std. Min. 25% 50% 75% Max.
User playcounts 21.6 34.3 5.0 80 12.0 21.0 950.0
Track playcounts 25.1 33.1 8.0 11.0 16.0 26.0 986.0

Table 10.1.: Statistical summary of the behavioral data (users sharing listening events)
in our dataset.

Group Agr. Con. Ext. Neu. Ope.
No. unique tracks/user 19.1 +24.4 19.2 +£25.5 20.0 £ 26.3 16.2 + 184 19.5 +24.9
High No. unique tracks 15,694 15,674 15,655 15,429 15,652
No. listening events 208,054 206,179 217,895 177,892 209,741
No. unique tracks/user 17.3 +21.7 17.2 +£20.4 16.4 £19.2 20.3 +£26.9 16.9 + 21.1
Low No. unique tracks 15,664 15,695 15,672 15,607 15,619
No. listening events 187,002 188,877 177,161 217,164 185,315

Table 10.2.: Mean and standard deviation of the number of unique tracks per user, for
each personality trait and group; as well as total numbers of unique tracks and listening
events created by all users in the low and in the high group.

10.3.3. Recommendation Approaches

We investigate to what extent the following three state-of-the-art recommendation ap-
proaches for implicit data yield different accuracy measures, depending on users’ person-
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Figure 10.1.: Distribution of personality traits. The x-axis represents the (scaled) score
for each trait while the y-axis represents the number of users. The red line represents
the median for each trait.

ality traits. They have been shown, in extensive experiments, to perform well [110]; and
we adapt them, where necessary, to cope with the non-binary nature of our interaction
data. This selection of algorithms allows us to investigate both deep learning (non-linear)
and traditional (linear) approaches:

e Sparse Linear Methods (SLIM) [336]: SLIM is a linear model that aims to compute
top-n recommendations by factorizing the item—item co-occurrence matrix under
non-negativity and L; and L9 normalization constraints. The learned item coef-
ficients are then used to sparsely aggregate past user interactions and predict the
items the user will interact with in the future.

e Embarrassingly Shallow Autoencoders (EASE) [443]: EASE is a shallow linear
model that could be considered as an extension of SLIM. Since EASE keeps only
the Ly norm constraint, a closed-form solution exists, making it computationally
more efficient to train the model.

e Variational Autoencoders (Mult-VAE) [285]: Mult-VAE is a variational autoen-
coder architecture, i.e., a non-linear, probabilistic model, that uses multinomial
conditional likelihood for collaborative filtering. Annealing is used to apply regu-
larization for the learning objective.

10.3.4. Evaluation Metrics

We assess performance using recall@K and normalized discounted cumulative gain@K
(NDCG@K) and report values averaged over all user groups in the test set.” Recall@K
for user u is defined as

K
P =1

where N, is the number of items in the test set which are relevant to u, K is the length
of the recommendation list, and rel(i) is an indicator function signaling whether the
recommended track at rank i is relevant to u (i.e., rel(u) = 1) or not relevant to u (i.e.,
rel(u) = 0).

"We will investigate beyond-accuracy metrics [230], such as coverage and diversity, as part of future
work.
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NDCG@K is defined as

DCGQK (u)

(10.2)

where IDCGQK (u) is the ideal DCGQK for user u, obtained when all items in u’s test
set are ranked in decreasing order of their play count, and DCGQK (u) is the discounted
cumulative gain at position k for user u, given by

rel(i
DCGQK (u Z gy H 5 (10.3)

where rel(7) is the same indicator function as above. In our experiments, we compute
recall@K and NDCGGQK for K = {5, 10,50}, to model different user needs, ranging from
a user interested in only a few top recommendations to a user who inspects a large part
of the recommendation list.

10.4. Experiments and Results
10.4.1. Experimental Setup

For our experiments, we apply a similar data splitting procedure as used in [285], i.e.,
we split the users in training/validation/test sets (80%/10%/10%) and for the held-out
users we use 80% of their items for training and the remaining 20% as test set to compute
the metrics.

We select the hyperparameters of the algorithms under investigation by performing a grid
search over different parameters and optimizing for NDCG@50 across all validation users.
For SLIM, we explore different o values (sum of the L; and L9 coefficients) and L ratios
(ratio of Ly coefficient in «). In detail, we search o in {.5, .1, .01, .001} and L; ratio in
{1, .1, .01}. For EASE, we explore different weights for the Ly norm in {1, 10, 102, 5-102,
103, 10%, 105, 105, 107}. For Mult-VAE, we re-use most of the hyperparameters proposed
in the original paper [285], except for the architecture and the annealing procedure. We
set the total number of epochs to 100. We explore different (symmetric) architectures,®
comprising 0 or 1 hidden layer(s) with fewer than 500 units for each layer.® As for the
annealing procedure, we either anneal the regularization parameter through the end of
training or stop it half-way by changing the annealing steps in {10,000, 20,000}.

addition, we explore caps for the annealing procedure in {0.5, 1}. After validation, the
best model is selected and evaluated for each user group (defined by trait and high vs. low

81-100-I, I-500-1, I-200-50-200-1, I-200-100-200-1, I-500-200-500-1, where I is the total number of tracks.
Increasing the layers and/or the units did not improve results.
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characteristic) in the test set. We conduct all experiments across 10 (random) splits of
users among the sets, using 10 different seeds for splitting. Results are then averaged
across the seeds.'”

10.4.2. Results and Discussion

Tables 10.3 and 10.4 show the results for all algorithms, personality traits, and user
groups, in terms of recall@K and NDCGQK, respectively. The values represent the
performance scores averaged across the 10 runs/seeds. Note that the standard deviation
of the results across these 10 runs is very low,'! indicating that results are robust and
stable across runs.

To assess the statistical significance of the differences between the high and low user group
for each trait, we apply the two-tailed Mann-Whitney-U test on the high and low user
scores 12 (NDCG@K and recall@K) and highlight their respective means in the tables
in bold, with asterisks denoting the different alpha levels. The most notable observation
is that for the traits neuroticism and openness most of all differences between the high
and low groups are highly significant (p < .001), both in terms of recall@{5, 10, 50}, and
NDCG@{5, 10, 50}. As a second observation, we find that the direction of difference
in performance is nearly always consistent between all investigated algorithms, i.e., all
algorithms treat the high vs. low groups unfairly in the same manner or direction; though
the absolute value of the difference varies between algorithms, of course.

While performance for highly neurotic users is consistently better than the performance
of low-neurotic-users, the opposite is true for all the other traits. These results seem to be
correlated with the data consumption statistics shown previously (cf. Table 10.2), namely,
a higher number of listening events and higher number of average tracks per user suggest
a negative impact on the performance metrics. Furthermore, for conscientiousness and
extraversion, the unfair treatment of user groups mostly appears for EASE and SLIM
but not for Mult-VAE, while the opposite is true for agreeableness. This suggests that
different models trained on the same data will lead to different kind of biases.

To finally answer our research questions: Do state-of-the-art recommender algorithms
yield different performance scores for different user groups in terms of personality traits?
They do indeed for some personality traits, in terms of recall@K and NDCGQK; most
notably for the traits openness and neuroticism, and to a smaller extent for the other

10Note that the random split stated previously could in theory create unbalanced training /validation /test
sets where some user groups may be underrepresented. We also carried out additional experiments
where we enforced an equal split in each set for each group (one trait at the time). Results were
consistent with the findings reported in this paper.

1 Standard deviations are 0.0044, 0.0044, and 0.0042 for NDCG@5, 10, and 50, respectively; 0.0049,
0.0052, and 0.0064 for recall@5, 10, and 50, respectively.

12The results follow the same trend when using the Fisher’s method to aggregate the p-values across
the seeds, although with decreased significance level except for openness.
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traits. If so, how can these differences be characterized? Scoring low on the personality
trait results in higher performance for openness, extraversion, and conscientiousness, but
in lower performance for neuroticism and agreeableness.

10.5. Conclusions, Limitations, and Future Work

In this work, we presented a first study to investigate the extent to which state-of-the-art
recommendation algorithms (EASE, SLIM, and Mult-VAE) treat users with different per-
sonality traits in different ways, in terms of accuracy metrics (recall@K and NDCG@QK).
We found highly significant differences (p < .001) in both performance scores in partic-
ular for the traits neuroticism and openness as well as significant differences at p < .01
and p < .05 for the other traits.

While results are noteworthy, we also identify several limitations of the study at hand.
First, like every research that leverages user data shared in online social networks, results
obtained for Twitter users may not generalize to the population at large, or even to other
platforms. Also, since Twitter’s Streaming APT only provides access to a small percentage
of all shared tweets, the data is incomplete, though still substantial in size. Third, since
we rely on self-disclosed information of Twitter users, the listening data we extract from
their tweets may not accurately reflect the actual behavior of users, rather how the users
want to be perceived (e.g., by avoiding to share guilty pleasure songs).

There are several directions we contemplate for future research. In the initial study
presented here, we identified certain biases in terms of unequal treatment of different
personality groups. However, the exact origin of these biases still needs to be investi-
gated further. In particular, to which extent differences in accuracy can be explained
by different consumption patterns of users with different personality (data bias), and to
which extent these differences are introduced by the recommender system itself (algo-
rithmic bias) remains an open question that will be addressed in the future. In addition,
we plan to include beyond-accuracy metrics [230], e.g., diversity, serendipity, and cover-
age in our investigation. Finally, we would like to investigate the extent to which results
generalize to platforms other than Twitter and additional recommendation algorithms.
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@5 @10 @50
Trait Algorithm All High Low All High Low All High Low
EASE 0.0366 1 0.0348 0.0385 0.0537 1 0.0534 0.0540 0.1122 1 0.1129 0.1113
Agr. SLIM 0.0334 1 0.0320 0.0348 0.0486 1 0.0478 0.0494 0.1014 | 0.1025% 0.1002*
Mult-VAE | 0.0433 | 0.0443* 0.0423* 0.0634 | 0.0655*** 0.0611%*** | 0.1456 | 0.1504%** (.1407***
EASE 0.0366 | 0.0328* 0.0406* 0.0537 | 0.0495* 0.0580* 0.1122 | 0.1096 0.1148
Con. SLIM 0.0334 | 0.0292%**  0.0377*** | 0.0486 ' 0.0447* 0.0527* 0.1014 ! 0.0989 0.1040
Mult-VAE | 0.0433 ' 0.0405 0.0462 0.0634 ' 0.0602 0.0665 0.1456 ' 0.1424 0.1488
EASE 0.0366 | 0.0312%*  0.0420%* | 0.0537 ' 0.0467* 0.0605* 0.1122 1 0.1032 0.1211
Ext. SLIM 0.0334 1 0.0284**  0.0384** | 0.0486 ' 0.0425* 0.0547* 0.1014 1 0.0926 0.1101
Mult-VAE | 0.0433 | 0.0378%*  0.0488** | 0.0634 | 0.0568 0.0698 0.1456 | 0.1348 0.1560
EASE 0.0366 | 0.0422*%*%* 0.0311*** | 0.0537 , 0.0608**  0.0466** | 0.1122 | 0.1216 0.1028
Neu. SLIM 0.0334 | 0.0396*** 0.0272%** | 0.0486 |, 0.0562*** 0.0411*** | 0.1014 , 0.1128* 0.0900*
Mult-VAE | 0.0433 | 0.0500%** 0.0367*** | 0.0634 ' 0.0721*** 0.0547*** | 0.1456 ' 0.1588**  0.1324%**
EASE 0.0366 | 0.0265*** 0.0468*** | 0.0537 | 0.0410*** 0.0663*** | 0.1122 | 0.0935%** 0.1307***
Ope. SLIM 0.0334 1 0.0232%**  0.0436*** | 0.0486 ' 0.0366*** 0.0605%** | 0.1014 | 0.0841%** 0.1186%**
Mult-VAE | 0.0433 1 0.0316*** 0.0550*** | 0.0634 1 0.0479*** 0.0787*** | 0.1456 | 0.1232*** 0.1678%**

Table 10.3.: Recall@5, 10, and 50 for each algorithm, personality trait, and group (high vs. low; and for all users). Significant
differences between high and low groups are marked in bold and with an asterisk (Mann-Whitney-U test, * p < .05, ** p < .01,
*oxk

p < .001).
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@5 @10 @50
Trait Algorithm All High Low All High Low All High Low
EASE 0.0311 1 0.0295 0.0327 0.0392 1 0.0386 0.0399 0.0576 1 0.0575% 0.0577*
Agr.  SLIM 0.0279 1 0.0263 0.0295 0.0351 1 0.0340 0.0363 0.0517 | 0.0514%*  0.0520%*
Mult-VAE | 0.0380 | 0.0385* 0.0374%* 0.0474 | 0.0485*** 0.0462%** | 0.0724 | 0.0747*** 0.0701***
EASE 0.0311 | 0.0274* 0.0349* 0.0392 | 0.0352*  0.0433* 0.0576 | 0.0542 0.0611
Con. SLIM 0.0279 | 0.0241%** 0.0319*** | 0.0351 | 0.0312*  0.0391* 0.0517 ! 0.0484 0.0551
Mult-VAE | 0.0380 ' 0.0353 0.0407 0.0474 ' 0.0445 0.0503 0.0724 ' 0.0697 0.0752
EASE 0.0311 1 0.0266**  0.0355%* [0.0392 ' 0.0342%  0.0441* 0.0576 ' 0.0525 0.0626
Ext. SLIM 0.0279 1 0.0242**  0.0317** | 0.0351 ' 0.0310%  0.0392* 0.0517 1 0.0474 0.0560
Mult-VAE | 0.0380 | 0.0340%*  0.0417** | 0.0474 | 0.0433 0.0513 0.0724 | 0.0678 0.0769
EASE 0.0311 | 0.0366*** 0.0257*** | 0.0392 | 0.0454**  0.0331** | 0.0576 | 0.0639 0.0513
Neu. SLIM 0.0279 | 0.0335%**  0.0224*** | 0.0351 | 0.0413*** 0.0290*** | 0.0517 | 0.0585 0.0449
Mult-VAE | 0.0380 | 0.0436*** 0.0324*** | 0.0474 ' 0.0539*** 0.0409*** | 0.0724 ' 0.0798*  0.0652*
EASE 0.0311 | 0.0221%**  0.0400*** | 0.0392 ' 0.0293*** 0.0491*** | 0.0576 ' 0.0463*** 0.0688***
Ope. SLIM 0.0279 ! 0.0196***  0.0363*** | 0.0351 ! 0.0261*** 0.0441%** | 0.0517 | 0.0413%** 0.0620%**
Mult-VAE | 0.0380 1 0.0285%**  0.0473%** | 0.0474 1 0.0366™** 0.0581*** | 0.0724 1 0.0600*** 0.0848%**

Table 10.4.: NDCG@5, 10, and 50 for each algorithm, personality trait, and group (high vs. low; and for all users). Significant
differences between high and low groups are marked in bold and with an asterisk (Mann-Whitney-U test, * p < .05, ** p < .01,
*oxk

p < .001).
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Abstract

The comprehensive evaluation of the performance of a recommender system is a complex
endeavor: many facets need to be considered in configuring an adequate and effective
evaluation setting. Such facets include, for instance, defining the specific goals of the
evaluation, choosing an evaluation method, underlying data, and suitable evaluation
metrics. In this paper, we consolidate and systematically organize this dispersed knowl-
edge on recommender systems evaluation. We introduce the “Framework for EValuating
Recommender systems” (FEVR) that we derive from the discourse on recommender sys-
tems evaluation. In FEVR, we categorize the evaluation space of recommender systems
evaluation. We postulate that the comprehensive evaluation of a recommender system
frequently requires considering multiple facets and perspectives in the evaluation. The
FEVR framework provides a structured foundation to adopt adequate evaluation con-
figurations that encompass this required multi-facettedness and provides the basis to
advance in the field. We outline and discuss the challenges of a comprehensive evalua-
tion of recommender systems, and provide an outlook on what we need to embrace and
do to move forward as a research community.
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11. Evaluating Recommender Systems: Survey and Framework

11.1. Introduction

Recommender systems (RS) have become important tools in people’s everyday life, as
they are efficient means to find and discover relevant, useful, and interesting items such
as music tracks [79], movies [58, 101], or persons for social matching [86]. A RS elic-
its the interests and preferences of individual users (e.g., by explicit user input or via
implicit information inferred from the user’s interactions with the system) and tailors
content and recommendations to these interests and needs [488|. As for most systems,
the evaluation of RS demands attention in each and every phase throughout the system
life cycle—in design and development as well as for continuous improvement while in
operation. Delivering quality is a necessary factor for a system to be successful in prac-
tice [32]. The evaluation may assess the core performance of a system in its very sense
or may embrace the entire context in which the system is used [45, 190, 215, 390, 399].
Research on RS typically differentiates system-centric and user-centric evaluation, where
the former refers to the evaluation of algorithmic aspects (e.g., the predictive accuracy
of recommendation algorithms). The latter targets the users’ perspective and evaluates
how users perceive its quality or the user experience when interacting with the RS. In
other words, the evaluation of a RS may cover system- or user-centric aspects concerning
the system’s context of use; a comprehensive evaluation essentially needs to address both
as, for instance, provided recommendations that are adequate in terms of system-centric
measures—for instance, the predictive accuracy of recommendation algorithms—do not
necessarily meet a user’s expectations [256, 313].

As we will demonstrate in this paper, there is an extensive number of dimensions that
need to be considered when assessing the performance of a RS [174]. Besides the various
facets of system configurations and the multitude of tasks that users aim to address with
a RS (for instance, finding good items to getting a recommendation for a sequence of
items) [190], there are multiple stakeholders involved who may have varying perspec-
tives on a RS’ goals [40]. There is a rich evaluation design space (e.g., evaluation setup,
data collection, employed metrics) to draw from and we have to specify evaluation con-
figurations that meet the respective evaluation objectives. Such objectives may relate
to, for instance, improving rating prediction accuracy, increasing user satisfaction and
experience, or increasing click-through rates and revenue. As a consequence, the com-
prehensive evaluation of a RS is a very complex task. As the ultimate goal is that a RS
functions well as a whole in various contexts (e.g., for different user groups, for different
kinds of tasks and purposes), the evaluation needs to assess the various dimensions that
make up a RS’ performance. What is more, frequently, we might need to shed light on
a single dimension from various angles. For instance, Kamehkhosh and Jannach [229]
could reproduce—and, thus, confirm—the results of their offline evaluation in an online
evaluation on users’ perceived quality of recommendations. Matt, Hess, and Weif [304]
evaluated several recommender algorithms for diversity effects from various angles; in
taking these different perspectives, they found that the level of recommendation diver-
sity perceived by users does not always reflect the factual diversity.

176



11. Evaluating Recommender Systems: Survey and Framework

While the knowledge about system evaluation—and RS evaluation in particular—is con-
tinuously growing, empirical evidence, insights, and lessons learned are scattered across
papers and research communities. To fill this research gap, this paper’s main objec-
tive and major contribution is to consolidate and systematically organize this dispersed
knowledge on RS evaluation. Therefore, we introduce the “Framework for EValuating
Recommender systems” (FEVR) that we derive from the discourse on RS evaluation.
We categorize the evaluation design space—i.e., the space that spans all required design
decisions when conducting comprehensive RS evaluations. With FEVR, we provide a sys-
tematic overview of the essential facets of RS evaluation and their application. As FEVR
encompasses a wide variety of facets to be considered in an evaluation configuration, it
can accommodate comprehensive evaluations that address the various multi-faceted di-
mensions that make up a RS’ performance. Besides guiding novices to RS research and
evaluation, FEVR is a profound source for orientation for scientists and practitioners
concerned with designing, implementing, or assessing RS. In addition, FEVR provides
a structured basis for systematic RS evaluation that the RS research community can
build on. We expect FEVR to serve as a guide to facilitate and foster the repeatabil-
ity and reproducibility of RS research for researchers and practitioners, from novices to
experts. Yet, comprehensive evaluation comes with challenges. Thus, to date, RS lit-
erature seems to concentrate on accuracy-driven offline evaluations and does not reflect
the existing knowledge about what a comprehensive evaluation requires |77, 206, 207].
We outline and discuss the challenges of comprehensive RS evaluation, and provide an
outlook on what we need to embrace and do to move forward as a research community.

11.2. Conceptual Basis

In the following, we briefly describe the foundations of recommender systems (Sec-
tion 11.2.1) and their evaluation (Section 11.2.2).

11.2.1. Recommender Systems

Recommender systems aim to help users to deal with information and choice overload [17]
by providing them with recommendations for items that might be interesting to the
user [378, 384]. In the following, we give a brief overview of the foundational recom-
mendation approaches: collaborative filtering, content-based RS, and more recent ad-
vances.

The most dominant approach for computing recommendations is collaborative filter-
ing [402, 403], which is based on the collective behavior of a system’s users. The underly-
ing assumption is that users who had similar preferences in the past will also have similar
preferences in the future. Hence, recommendations are typically computed based on the
users’ past interactions with the items in the system [64, 132, 190, 402, 403|. These
interactions are recorded in a user-item rating matrix, where the users’ ratings for items
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are stored. Such ratings may either refer to explicit ratings where users assign scores on
a scale of, e.g., 1 to 5, to items, or implicit ratings. Fig. 11.1 shows an example of such
a user-item matrix. Note that user-item matrices are highly sparse, as users only rate
a small fraction of items available in the system. The algorithmic task of a RS is that
of matrix completion—i.e., predicting the missing ratings in the matrix. This prediction
of ratings can be performed using various methods: from traditional matrix completion
methods, over neighborhood-based methods to matrix factorization, machine or deep
learning-based approaches. For further information on these approaches, we refer the
interested reader to the existing literature on these topics (e.g., [132, 263, 335, 402, 403,
447, 518)).

Items
i1 dp 13 14 5
up | 0 3 3
] 2
—
2 us 2
s 3 1
us | 5 1 1

Figure 11.1.: Exemplary user-item matrix M with 0-5 star ratings for items i1—i5 by
users uj—us.

For user-based collaborative filtering RS that leverage the neighborhood of users in the
two-dimensional space of the matrix, the most similar users to the current users are
detected (the so-called neighborhood) by comparing their interactions with the system.
Analogously, in item-based (item-item) collaborative filtering [402], the most similar
items to the ones the user has previously rated highly are recommended, where the
similarities are again computed based on the user-item matrix. Subsequently, items the
user has not interacted with are sorted by their predicted ratings and the top-n items
are then recommended to the user.

For collaborative filtering tasks, Matrix Factorization (MF) [262] aims to find latent
factors in a joint, lower-dimensional space that explain user ratings for a given item.
Specifically, latent representations for users and items are computed such that user-item
interactions can be modeled as the inner product of user and item representations. This is
often performed by applying optimization approaches to decompose the user-item matrix
into two lower-dimensional matrices (e.g., stochastic gradient descent or alternating least
squares), mostly relying on a regularized model to avoid overfitting (e.g., [156, 199]).
Furthermore, learning-to-rank approaches model the computation of recommendations
as a ranking task and apply machine learning to model the ranking of recommendations.
In principle, we differentiate three types of learning-to-rank approaches: (i) point-wise
(compute a score for each item for ranking; used in traditional CF approaches), (ii) list-
wise (compute an optimal order of a given list), and (iii) pair-wise (consider pairs of
items to approximate the optimal ordering). Bayesian Personalized Ranking is a popular
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example for learning-to-rank models; it is a generic, model-agnostic learning algorithm for
predicting a personalized ranking [372| based on training pairs that incorporate positive
and negative feedback.

In contrast, the central idea of content-based approaches is to recommend items that
share characteristics with items that the user has previously liked (for instance, items
that have a similar description or genre) |7, 328, 348|. Based on these characteristics
of the user’s previously liked items, a user model (often referred to as user profile) is
built that represents the user’s preferences. For the computation of recommendations,
the user model is matched against item characteristics, and the most similar, and hence,
relevant items are subsequently recommended to the user. Hybrid RS aim to combine
collaborative and content-based filtering to leverage the advantages of both [67].

Similar to many other fields, a multitude of machine and deep learning models have been
adapted for use in recommender systems. These include, for instance, deep neural net-
works for collaborative filtering, where the user-item interactions are modeled by a neu-
ral network [186], deep factorization machines [176], or (variational) autoencoders [285].
Convolutional Neural Networks (CNN) are mostly used for learning features from (mul-
timedia) sources. For instance, learning representations from audio signals and incorpo-
rating them in a CF approach [470], or extracting and modeling latent features from user
reviews and items [521]. Recurrent Neural Networks (RNN) allow modeling sequences
and, hence, are applied for sequential recommendation tasks such as playlist generation
or next-item recommendation [191, 368|. The use of reinforcement learning models for
recommendation tasks is often performed by formulating the task as a multi-armed ban-
dit problem (contextual bandits) [283, 308, 520|. Here, the bandit sequentially provides
recommendations to users by also incorporating their contexts while continuously up-
dating and optimizing the recommendation model based on user feedback. Furthermore,
graph convolutional networks (GCN) model users, items, and potential side information
in a graph. Based on this information, latent representations for nodes are learned by
aggregating feature information from local neighbors (e.g., [184, 347]). This allows us-
ing these representations for candidate generation by nearest-neighbor lookups [498] or
performing link-prediction tasks [48]. For a survey on deep learning for recommender
systems, please refer to Zhang, Yao, Sun, and Tay [518]. In the context of evaluat-
ing deep learning recommender systems, it is noteworthy that evaluation metrics (cf.
Section 11.3.4) are frequently used as loss functions (i.e., during the training phase).

Besides traditional recommendation approaches, there are several important extensions
and specialized recommender systems that allow to deal with further input data or adapt
to more specific use cases. These include, amongst others, context-aware recommender
systems [9], where further contextual factors that describe e.g., the user’s situation (for
instance, time, location, weather) are leveraged to compute recommendations that are
suitable for a given user in a given context. Sequential (or sequence-aware) recommender
systems [367] analyze the sequence of user interactions to compute sequences of recom-
mendations (e.g., recommending the next song to listen to, given a sequence of songs
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the user has just listened to). Conversational recommender systems provide more so-
phisticated interaction paradigms for preference elicitation, item presentation, or user
feedback [212]. All of these approaches go beyond traditional recommender systems and
user interactions and, hence, also require more complex evaluation methods and setups.
We refer the interested reader to the respective survey articles [9, 212, 367] for details on
such evaluations.

11.2.2. Evaluation of Recommender Systems

An evaluation is a set of research methods and associated methodologies with the dis-
tinctive purpose of assessing quality [446]. In their book, Jannach, Zanker, Felfernig, and
Friedrich [217] state that evaluations are “methods for choosing the best technique based
on the specifics of the application domain, identifying influential success factors behind
different techniques, or comparing several techniques based on an optimality criterion”
and that they are all required for effective evaluation research.

One of the early works on evaluating RS by Herlocker, Konstan, Terveen, and Riedl [190]
focuses on the evaluation of collaborative filtering RS. The authors stress that evaluating
RS is inherently difficult as (i) algorithms may perform differently on different datasets,
(ii) evaluation goals may differ, and (iii) choosing the right metrics to compare individual
approaches is a complex task. Gunawardana, Shani, and Yogev [174| provide a general
overview of evaluation methods for RS.

Beel, Gipp, Langer, and Breitinger [43] and Beel, Langer, Genzmehr, Gipp, Breitinger,
and Nirnberger [45] investigated evaluation approaches in the field of research paper
recommender systems. They find that 21% of all approaches do not include an evaluation
and that 69% are evaluated using an offline evaluation. Furthermore, they also looked
into baseline usage and the datasets utilized for the evaluation. The authors note that
the wide usage of no or weak baselines, as well as the usage of very different datasets,
makes it difficult to compare the performance of the individual approaches, which in
turn severely hinders advancing research in the field. Dehghani Champiri, Asemi, and
Siti Salwah Binti [114] performed a systematic literature review on evaluation methods
and metrics for context-aware scholarly recommender systems. In a meta-analysis, they
reviewed 67 studies and find that offline evaluations are the most popular experiment

type.

Comparing a RS’ performance results to existing approaches and to competitive, strong
baselines is also an important aspect for assessing and contextualizing the performance
of the system. In this regard, Rendle, Zhang, and Koren [375] show that several widely-
used baseline approaches, when carefully set up and tuned, outperform many recently
published algorithms on the MovieLens 10M benchmark [181]. Along the same lines, Fer-
rari Dacrema, Boglio, Cremonesi, and Jannach [143] and Ferrari Dacrema, Cremonesi,
and Jannach [144] investigated the performance of deep learning recommendation ap-
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proaches published at major venues between 2015 and 2018, particularly, when compared
to well-tuned, established, non-neural baseline methods. They found that the majority
of approaches were compared to poorly-tuned, weak baselines and that only one of twelve
neural methods was consistently outperforming well-tuned learning-based techniques.

Complimentary to existing works on RS evaluation, we consolidate and systematically or-
ganize this knowledge in the proposed Framework for EValuating Recommender systems
(FEVR).

11.3. Recommender Systems Evaluation: A Review

Fig. 11.2 presents an overview of the components and general factors to be considered for
recommender systems evaluation. Along this framework, we present the conceptual basis
and paradigms used in recommender system evaluations. We term the framework FEVR:
Framework for EValuating Recommender systems and emphasize that not necessarily all
of these components and factors might be required to conduct a comprehensive evaluation
of RS (this particularly holds for the proposed evaluation aspects). We consider this
framework a collection and overview of potentially relevant components; it is meant to
provide researchers and practitioners with an overview of the choices to be made when
setting up the evaluation design and procedure.

Evaluation Design Space

Evaluation Principles Experiment Type
Evaluation Objectives Hypothesis / Research Question Offline Evaluation
Overall Goal Control Variables User Study
Stakeholders | Generalization Power Online Evaluation
Properties Reliability

Evaluation Aspects

Types of Data Data Collection
Data Quality and Biases Evaluation Metrics

Evaluation System

Figure 11.2.: Framework for EValuating Recommender systems (FEVR): evaluation ob-
jectives and the design space (along the orthogonal dimensions of evaluation principles,
experiment type, and evaluation aspects).

The framework contains two main components: the evaluation objectives and the eval-

uation design space. When designing RS evaluations, deciding upon the objectives of
the evaluation (What should be evaluated? How can we measure this?) has to be the
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first step because this directly influences the design decisions for the evaluation setup.
The second component, the evaluation design space contains basic building blocks for
the actual setup of the evaluation, which are assembled and configured based on the
overall goal, the stakeholders involved, and the properties of the RS that need to be
evaluated. In the evaluation design space, we distinguish three design blocks. The so-
called evaluation principles describe the guiding principles of the evaluation—from the
definition of the hypothesis underlying the evaluation to the generalizability of the con-
ducted evaluation. These principles are tightly connected and influenced by the defined
objectives because, for instance, the hypothesis to be evaluated needs to reflect the main
objective of the evaluation (e.g., investigating whether algorithm A performs better than
algorithm B). Given the objectives and principles, the experiment type can be considered
a broad categorization of the type of experiment conducted to satisfy the objectives and
principles (offline evaluation, user study, or online evaluation). Fwvaluation aspects can
be considered a more fine-grained specification of the evaluation setup and, based on the
defined requirements, control the detailed evaluation setup. They can be considered a
set of configurations and decisions that do not necessarily all have to be considered for a
RS evaluation; they should provide guidance for setting up and conducting comprehen-
sive evaluations. We consider the choices of evaluation principles and experiment type
rather high-level, whereas evaluation aspects cover more detailed and specific decisions
regarding the evaluation setup.

In the following, we detail each of the framework’s components and discuss their role in
the activities of evaluating recommender systems.

11.3.1. Evaluation Objectives

At the heart of any evaluation, activity is the comparison of the objectives (target per-
formance) to the observed results (actual performance) [352]. Thus—whether explicitly
or implicitly stated—, evaluation is always based on one or more evaluation objectives.
Evaluation objectives for evaluating a RS may take many forms. KEssentially, objectives
are shaped by the overall goal of academic and/or industry partners and the purpose of
the system [206]. In this context, Herlocker, Konstan, Terveen, and Riedl [190] underline
that any RS evaluation has to be goal-driven. Schroder, Thiele, and Lehner [425] em-
phasize that setting the goal of an evaluation has to be executed with sufficient care and
it should be the first step of any evaluation to “define its goal as precisely as possible”.

The underlying premise of any RS evaluation—in academia and industry—is that a RS is
supposed to create value in practice [215] and have an impact in the real world [207]—in
the long run, or even in the short run. Thus, overall goals that are typically investigated
by academia, as well as industry, include, among others, a RS’ contribution to increasing
the user satisfaction [384], increase an e-commerce website’s revenue [174], increase the
number of items sold [384], sell more diverse items [384], help users understand the item
space [206, 216, and engage users to increase their visit duration on a website, or return
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to the website [487]. Although several goals and purposes of RS are addressed in RS
research and evaluation, it is remarkable that this variety of user tasks and RS purposes
is not widely reflected in literature; instead, the main interpretation of the purpose of a

RS seems to be “help users find relevant items,’
are largely underexplored in the literature [206].

while other recommendation purposes

Concerning setting an evaluation goal, Schroder, Thiele, and Lehner [425] provide a vivid
example of a precise evaluation goal: “Find the recommendation algorithm and param-
eterization that leads to the highest overall turnover on a specific e-commerce website,
if four product recommendations are displayed as a vertical list below the currently dis-
played product.” Crook, Frasca, Kohavi, and Longbotham [108] consider prediction,
ranking, and classification as the most common tasks when viewed from the system’s
perspective. Considering the end consumers’ perspective, Herlocker, Konstan, Terveen,
and Riedl [190] discuss various end consumer tasks that a RS might be able to support
(e.g., finding good items, finding all good items, recommending a sequence, discovering
new items). Such tasks essentially describe the end consumers’ overall goals that a RS
might be evaluated for. A RS may, thus, be evaluated for their ability to find good
items, find all good items, recommend a sequence, or discover new items. When describ-
ing pitfalls and lessons learned from their evaluation activities, Crook, Frasca, Kohavi,
and Longbotham [108| emphasize the importance of choosing an overall evaluation goal
that truly reflects business goals.

In general, evaluation objectives are shaped by the perspective that is taken in terms
of the recommender’s stakeholders. Beyond the end consumers, there are typically mul-
tiple stakeholders involved in and affected by recommender systems [1] with varying
goals and potentially conflicting interests [40], which may manifest in different evalua-
tion objectives. Currently, academic RS research tends to take the perspective of the end
consumer [205|, whereas research in industry is naturally built around the platform or
system provider’s perspective [513]. The item providers are a relatively new concern in
RS research (e.g., [136, 145, 164]). To date, RS research that takes multiple stakeholders
into account is scarce [1, 40, 122]. Table 11.1 provides an overview of evaluation papers
that take different stakeholders’ perspectives.

Stakeholder Examples

Consumer [155, 245, 247, 250, 364, 365]
Consumer Groups [141]

Platform Provider [43, 206, 208]

Item Provider [379]

Multiple Stakeholders |1, 40, 69]

Table 11.1.: Overview of papers on the evaluation of RS considering different stakeholders’
perspectives.
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While evaluating a recommender’s overall goals (e.g., for an increase in a website’s rev-
enue) can be helpful, Gunawardana, Shani, and Yogev [174] point out that it can be most
useful to evaluate how recommenders perform in terms of specific properties. This allows
focusing on improving specific properties where they fall short (e.g., usage prediction ac-
curacy, sales diversity, confidence in the recommendation, privacy level). The challenge is
to identify the properties that are indeed relevant for a recommender’s performance and
show that it affects the users’ experience [174], or the interests of other stakeholders. As
different domains, applications, and consumer tasks have different needs, it is essential to
decide on the most important properties to evaluate for the concrete RS at hand [174].
As already pointed out, Schroder, Thiele, and Lehner [425] emphasize the importance to
define the evaluation goal as precisely as possible. Accordingly, specifying the relevant
properties will provide the necessary fine granularity in defining the evaluation objective.
As there might be trade-offs between sets of properties, it is often difficult to anticipate
how these trade-offs affect the overall performance of the system [174]; this has to be
considered in finding an appropriate evaluation design.

The evaluation objectives—including the overall goal, the stakeholder(s) being addressed,
and the properties in the loop—are central to any evaluation effort and are, thus, the
main drivers for configuring the evaluation design. We emphasize that poorly defined
objectives will inevitably result in a poor evaluation.

11.3.2. Evaluation Design Space: Evaluation Principles

Closely related to the previously described evaluation objectives is a set of guiding prin-
ciples for conducting evaluations [174]. These principles are pivotal in the process of
designing and conducting RS evaluations because they lay the foundation of the evalua-
tion procedure and provide the foundation of the setup. Hence, they should be considered
and fixed early on in the process of evaluating a RS to shape the method and setup of
the evaluation.

The first evaluation principle concerns hypotheses (or research questions) that capture
the evaluation objectives. Depending on the overall goal and whether a problem can
be clearly defined, the evaluation’s overall goal may be translated to one or more a-
priori formulated hypotheses that are grounded on prior knowledge (e.g., observations or
theory) [478], or to one ore more exploratory-driven (broader) research questions.

Confirmatory evaluation involves testing one or more a-priori formulated hypotheses.
Hence, a central starting point for confirmatory evaluation is the formulation of one or
multiple hypotheses regarding the outcome of the evaluation. Defining a concise hypoth-
esis is a highly important step as it allows to precisely define the evaluation’s goal—the
more precise the hypothesis, the clearer the evaluation setup as the hypothesis (in line
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with the evaluation objectives) shapes the evaluation design.! An example of a hypothesis
for RS evaluation in the field of content-based video recommendations is “Our recom-
mendation algorithm based on visual features leads to a higher recommendation accuracy
in comparison with conventional genre-based recommender systems” [116]. Another ex-
ample is Knijnenburg and Willemsen [248|’s hypothesis regarding preference elicitation
(PE): “Novices have a higher satisfaction and perceive the system as more useful when
they use the case-based PE method (compared to the attribute-based PE method), while
experts have a higher satisfaction and perceive the system as more useful when they use
the attribute-based PE method (compared to the case-based PE method).” Jannach and
Bauer [207] claim that algorithmic RS research frequently comes without (appropriate)
hypothesis development; they call for more theory-guided research with clear pointers to
underlying theory (e.g., from psychology) that support the hypotheses.?

Yet, sometimes the evaluation objectives address a problem where little is known about
the phenomenon. In such situations, the problem cannot be clearly defined at this state
of research and the evaluation might, thus, be of exploratory nature (e.g., to get a bet-
ter understanding of a problem or explore patterns). In such cases, it is not possible
or suitable to formulate hypotheses. Instead, the evaluation’s overall goal can be ad-
dressed by formulating research questions. For instance, Liang and Willemsen [286] seek
to understand the effects of defaults in music genre exploration for which they formulate
three research questions. Concerning author gender distribution in book recommenda-
tions, and Ekstrand and Kluver [136] explore how individual users’ preference profiles
propagate into the recommendations that they receive.

In hypothesis testing, all variables in the RS ecosystem that are not evaluated should
be held fixed. Also in exploratory evaluation, the researcher exercises some control over
the research conditions to explore the phenomenon of interest. The second evaluation
principle, control variables (or short: controls) minimize the confounding variables and
we eliminate potential external influences on the evaluation result [174, 476]. This al-
lows a targeted evaluation and comparison of different algorithms and configurations by
ensuring that only variables that are evaluated can be changed and that differences in
the evaluation results are not due to some further, external factors. Going back to the
previous example hypothesis regarding preference elicitation, the authors tested the hy-
pothesis by utilizing the PE method, user expertise, and commitment as independent
variables and measured satisfaction with the system, perceived usefulness, understand-

'For a discourse on the issues related to hypothesis-testing if a field is prone to produce “pseudo-
empirical hypotheses” see Smedslund [436]. Smedslund [436] particularly emphasizes the problem
that there is a prevailing belief (i.e., the current paradigm centered on the notion of probability)
that “hypotheses that make sense are true, and hypotheses that do not make sense are false.” For a
discussion on the role of confirmation bias in making progress in research see Greenwald, Pratkanis,
Leippe, and Baumgardner [170] or Wagenmakers, Wetzels, Borsboom, van der Maas, and Kievit
[478].

2As an example, Jannach and Bauer [207] state that many works build on underlying assumptions
such as “higher diversity is better” without providing any pointers to underlying research that would
support such an assumption.
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ability, and satisfaction with the chosen measures as dependent variables, while fixing all
other variables. Jannach, Zanker, Felfernig, and Friedrich [217] refer to these controlled
test conditions as the “internal validity” [73] of experiments.

The third important principle is the generalization power of evaluations, the extent to
which the conclusions of the evaluation are generalizable beyond the current evaluation
setup and experiments. The generalization power is tightly connected to the evalua-
tion setup as e.g., varying the experimental setup, conducting experiments with different
datasets, or extending the experiments to cover further application domains, user groups
or stakeholders typically increases the generalization power of the evaluation [400]. Jan-
nach, Zanker, Felfernig, and Friedrich [217] refer to this as “external validity” [73], namely
the “extent to which results are generalizable to other user groups or situations [350]”.

Reliability |217] is the fourth cornerstone of research evaluations as it demands evalua-
tions to be consistent and free of errors (in both data and measurements). Particularly
the consistency of multiple evaluation runs is crucial as this demonstrates the highly desir-
able repeatability of experiments, i.e., the ability to observe similar results of experiments
conducted successively under the same (documented) settings and configurations, allow-
ing consistent results describing the RS’ performance. Tightly connected to repeatability
is reproducibility, which refers to the ability “to duplicate the results of a prior study
using the same materials as were used by the original investigator. That is, a second
researcher might use the same raw data to build the same analysis files and implement
the same statistical analysis in an attempt to yield the same results... Reproducibility
is a minimum necessary condition for a finding to be believable and informative” [168|.
Reproducible results require either access to the source code or a detailed description of
the algorithm such that it can be re-implemented as well as having access to the dataset
that was originally used. In this context, it is important to differentiate between repro-
ducibility and replicability, which can be defined as the ability “to duplicate the results of
a prior study if the same procedures are followed but new data are collected” [168]. In a
nutshell, the three key concepts here can be defined as follows: reproducibility (different
team, different experimental setup), repeatability (same team, same experimental setup),
and replicability (different team, same experimental setup) as stated by the Association
for Computing Machinery’s badging initiative.

The ACM Conference on Recommender Systems (RecSys) has introduced a specific re-
producibility track in 2020, which calls for “algorithmic papers that repeat and analyze
prior work”. Notably, this track calls for replicability as well as reproducibility papers.
To further stress the importance of reproducibility, the best paper award of RecSys 2019
was awarded to Ferrari Dacrema, Cremonesi, and Jannach [144], in which the authors
aim to reproduce the results of 18 papers from the field of deep learning recommender

3https://www.acm.org/publications/policies/artifact-review-badging, also following Hong
[195].

4Call for Papers (Reproducibility Track) for RecSys 2022: https://recsys.acm.org/recsys22/call/
#content-tab-1-1-tab
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algorithms. In an extended version of that study, Ferrari Dacrema, Boglio, Cremonesi,
and Jannach [143] find that only twelve out of the 26 evaluations had a reproducible
setup, corresponding to a total of 46% of all systems. Here, the authors considered a
paper to have a reproducible setup if (i) a working version of the source code is available
or the code only has to be modified in minimal ways to work correctly, and (ii) at least
one dataset used in the original paper is available (this also includes the train-test splits
to be available or at least be reconstructible based on the description in the paper). The
importance of documenting train/test splits (among other factors) is also highlighted by
Canamares, Castells, and Moffat [74], who show that different splitting methods and
factors can lead to diverse evaluation results. On a similar note, Bellogién and Said [47]
make the case for accountability and transparency in RS research and argue that only
if the conducted research and evaluation is reproducible, it is also accountable. They
discuss the requirements for accountable RS research and derive a framework that allows
for reproducible and, hence, accountable RS evaluation.

11.3.3. Evaluation Design Space: Experiment Type

In RS research, we distinguish three experiment types: offline evaluations, user studies,
and online evaluations [42, 44, 154, 174, 190|. These different types describe the general
experimental setup; Gunawardana and Shani [173] also refer to these types as “evaluation
protocols”. The characteristics of these types include, among others, aspects of user
involvement, utilized and obtainable data, or the type of insight that can be gained when
using a specific experiment type. Please note that experiments of more than one type
may be necessary to obtain a full picture of the performance of a RS. Offline evaluations
are often the first step in conducting evaluations and there is a “logical evolution from
offline evaluations, through user studies to online analyses” [154]. Fig. 11.3 shows an
overview of the three experiment types, emphasizing that they represent a contrasting
spectrum of experiments, covering diverse and different aspects of RS performance, where
each type comprises a wide variety of evaluation setups and configurations.

Table 11.2 features an overview and comparison of the three established experiment
types utilized in the RS research community. In the following, we further elaborate
on their characteristics, goals, usage scenarios, and differences. Offline evaluations aim
to compare different recommendation algorithms and settings; they do not require any
user interaction and may be considered system-centric. In contrast, both, user studies
and online evaluations, involve users and can be considered user-centric. Still, user
involvement in evaluation does not necessarily target or capture the user experience, as
discussed in Knijnenburg and Willemsen [247]. Also, for instance, Celma and Herrera
[81] refer to leave-n-out methods, a typical offline evaluation method, as user-centric;
while at the same time, they state that those evaluations measure accuracy and neglect
(user-perceived) efficiency of recommendations.
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User involved
Provided with tasks
Record interaction
Questionnaire

Experiment
Historic data

Mimic user behavior
No user involved

Real-world settings
Productive system
Users involved

Figure 11.3.: Spectrum of experiment types.

Orthogonal to the distinction between online and offline experiments and user studies,
Said, Tikk, Stumpf, Shi, Larson, and Cremonesi [399] and Knijnenburg and Willem-
sen [247] distinguish system- and user-centric evaluations and emphasize the different
objectives of the adopted evaluation methods: system-centric evaluation methods eval-
uate the system, while user-centric evaluation methods target the user experience when
interacting with the system.

Offline Evaluation

In research literature, the most frequently used experiment type for RS evaluation are
so-called “offline evaluations”.? An offline evaluation uses a pre-collected dataset that
contains users’ explicit feedback on items (e.g., ratings of items) or implicit feedback on
items (e.g., the items purchased, viewed, or consumed) [174]. User behavior is then mim-
icked and simulated based on this historical data, no real users (and their interactions
with the system) are involved in the actual experiments. For the experiments, parts of the
rating information are removed (at random) from the given dataset’s user-item matrix
(so-called leave-n-out evaluation [106]) and, subsequently, the recommender algorithms
are analyzed regarding their ability to recommend (i.e., predict) the missing informa-
tion [42, 44]—assessing whether the given recommender is apt to simulate user behavior
to predict ratings that are reflected in the previously hidden data. Typically, offline
evaluations are used to compare two or more RS algorithms (offline A/B testing [161]).
Offline evaluations are meant to identify promising recommendation approaches by us-
ing metrics such as algorithmic accuracy and precision [42, 44, 247|, and evaluating the
predictive power of the approaches in regards to user preferences and opinions [154]—

5 According to Jannach and Bauer [207], more than 92% of the 117 RS papers published at AAAT and
IJCAT in 2018 and 2019 relied exclusively on offline experiments. At ACM RecSys 2018 and 2019,
three of four papers only used offline evaluations. For the years 2006-2011, more than two-thirds of
papers relied on offline experiments Jannach, Zanker, Ge, and Groning [218].
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Type Description

Offline Method: simulation of user behavior based on past interactions
Task: defined by the researcher, purely algorithmic
Repeatability: evaluation of an arbitrary number of experiments (e.g., algo-
rithmic settings, models) possible at low cost
Scale: large dataset, large number of users
Insights: quantitative, narrow (focused on the predictive performance of algo-
rithms)
User Study Method: user observation in live or laboratory setting

Task: defined by the researcher, carried out by the user

Repeatability: expensive (recruitment of users)

Scale: small cohort of users

Insights: quantitative and/or qualitative (live user data, logging of user actions,
eye tracking, questionnaires before/during/after task)

Online Method: real-world user observation, online field experiment
Task: self-selected by the user, carried out by the user
Repeatability: expensive (requires full system and users)
Scale: size of the cohort of users depending on evaluation system and user base
Insights: quantitative and/or qualitative (live user data, logging of user actions,
questionnaires before/during/after exposure to the system)

Table 11.2.: Overview of experiment types.

thus, the scope of evaluation objectives that can be evaluated with an offline evaluation
is rather narrow [174] and focused on algorithmic tasks. It is, however, easy to repeat
offline experiments as each evaluation run can be repeated any number of times using
different recommender setups, algorithm parameters, datasets, users, etc., and also, at
an arbitrary scale regarding the input dataset and the number of users evaluated.

Temporal aspects of data can be critical in the design of such an evaluation. Burke [66]
suggests a “temporal leave-one-out approach”, where the timestamps are considered in
selecting which part of the data is used for training the model and which part for testing.
Gunawardana, Shani, and Yogev [174] emphasize that selecting data based on timestamps
allows for simulating what a recommender’s predictions would have been if it had been
running at the time when the data was available. Starting with no available prior data for
computing predictions and stepping through user and interaction data in temporal order
may be ideal in terms of simulating the system’s behavior along the timeline; however,
for large data sets, such an approach is computationally expensive [174].

While offline evaluations are widely used to obtain insights into the predictive perfor-
mance of different recommendation algorithms, there are also disadvantages to offline
evaluations. Given the described setup that relies on historic data, offline evaluation
does not involve (current) real users. There is no interaction of users with the given (to
be evaluated) RS algorithm in an actual system and the performance of the algorithm in
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a real-world scenario can not be assessed. Hence, the generalizability (external validity)
of the findings obtained by offline experiments is limited, and frequently questioned [388].
For instance, a recent study [225] showed that offline experiments on historical data for a
destination recommender system did show higher predictive accuracy than a subsequent
user study. In another study [388], offline experiments underestimated the precision
results of online evaluations.

Counterfactual learning methods [14, 449| overcome one of the key problems in offline
evaluation; namely, that the dataset was logged from a real-world platform where a
particular RS was active (i.e., logged policy) while the offline evaluation has the objective
to evaluate another RS algorithm (i.e., target policy). With counterfactual learning
methods, one can address the question of how well a new RS algorithm would have
performed if it had been used instead of the policy that logged the historical data. This
counterfactual approach also reduces the effect of selection biases (i.e., biases introduced
into the data through the actions selected by the logging policy) [222].

User Study

A user study is conducted by recruiting a (small) set of human test subjects who perform
several pre-defined tasks that require them to interact with the RS [174]. The goal here
is to observe user interaction with the system and to distill real-time feedback on the
system’s performance and the user’s perceived value of the system. This observation
can either be conducted in a laboratory or live setting. Thereby, the user study may be
conducted in a way to compare two or more systems in, for instance, an experimental
setup (controlled experiment®); a user study may also focus on exploring a particular
phenomenon without comparing specific RS approaches (exploratory study) [365]. The
subject’s interaction behavior with the system is recorded and based on these records,
various quantitative measures may be computed (e.g., time to complete a task, click-
through rate, recommendation acceptance). In addition, the setting of a user study al-
lows for asking subjects closed or open-ended questions during, before, and after the task
potentially also providing qualitative feedback [174]. Further, user studies allow for inte-
grating various forms of measurements such as eye-tracking or think-aloud-testing [338|.
Hence, user studies allow for the most comprehensive feedback compared to the other
experiment types, enabling answers to the widest set of questions. Notably, user studies
measure user experience at the time of recommendation.

It is important to note that user studies may lead to costs [44, 114]—both in user time
and financial costs, often limiting the number of users being involved in the study or
the number of different system dimensions and configurations that can be investigated
and evaluated [154|. This also involves recruiting a set of participants that are willing to
participate in the experiment. These participants should be representative of the actual

6 Although an experimental setup may compare two or more variants of a RS, the term A /B testing is
typically not used in the context of user studies.
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users of the system and have access to a running recommender system. Furthermore,
users who know that they are part of a study often tend to behave differently (called
“Hawthorne effect” [272]). Generally, user studies need extensive preparation and plan-
ning as repeating is expensive. Besides, a wide range of sensors and detailed observations
of user behavior need to be installed to make sure to not miss any vital information dur-
ing the study as a potential rerun of the experiment may be expensive. These factors can
be regarded as causes of the low adaption of user studies in the field of RS research [42,
44).

Online Evaluation

In online evaluations, the RS is deployed in a real-world, live setting [174]. In contrast to
user studies, users are not presented with specific tasks, but use the system to perform
self-selected real-world tasks (also referred to as “live user studies” [154]). Hence, online
evaluations allow for the most realistic evaluation scenario as users are self-motivated
and use the system in the most natural and realistic manner [252, 253]. Accordingly,
online evaluations provide feedback on the system’s performance for users with a real
information need [174]. Similar to user studies, user behavior is logged and recorded
and subsequently used to distill performance metrics such as recommendation accuracy.
Typically, this also involves measuring the acceptance of recommendations using click-
through rates (CTR).

While the real-world setting is an advantage of online evaluations [252, 253], this very
setting limits this experiment type to collecting user behavior on the platform (e.g.,
purchases, clicks, dwell, time). When inferring user satisfaction from user behavior [42,
44], care has to be taken because user behavior (e.g., consumption activity) may also have
different or additional causes such as integrated nudges [221], closing an app interpreted
as negative feedback for an item [60], or biases due to interruptions or distractions [328].

We note that online evaluations require access to a RS and its implementation. Typically,
online evaluations are carried out in the form of A /B testing [252] to compare the adapted
system/algorithm to the original system. In so-called online field experiments [94], a
small number of users are randomly assigned and exposed to different alternative RS
configurations (instantiations) without their knowledge, and the users’ interactions with
the systems are recorded and analyzed. These instantiations may include different rec-
ommendation algorithms, and algorithm configurations, but also different interaction,
presentation, or preference elicitation strategies.

Furthermore, online evaluations are performed for recommender systems that require a

high amount of interaction with the user or where specifically the interaction with the
user needs to be evaluated (e.g., critiquing systems [383], conversational recommender
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systems [98, 212|, or novel interfaces and interaction strategies [59, 246|) that can not
be simulated are often evaluated in online field experiments. Traditionally, this includes
A /B testing [252].

11.3.4. Evaluation Design Space: Evaluation Aspects

In this section, we provide an overview of individual aspects that are to be considered in
the evaluation design space. Many of these aspects are interwoven, and their characteris-
tics might have interdependencies or may be mutually exclusive. For instance, synthetic
datasets come—by definition—without any user involvement. Experiments with random
assignment of user groups to treatments (e.g., different RS algorithms) may be imple-
mented in user studies (in randomized control trials or laboratory experiments) or online
evaluation (in online field experiments) alike. Furthermore, trade-offs between RS per-
formance indicators have been observed; for instance, a trade-off between accuracy and
diversity is frequently reported (230, 269], and diversity may not necessarily be perceived
by users [197, 249] or differently across users [269]. Moreover, situational factors may
influence user experience due to varying user needs or preferences [120, 385].

Consequently, frameworks are an effective means to organize this complexity. For in-
stance, Knijnenburg, Willemsen, Gantner, Soncu, and Newell [249]’s framework for the
user-centric evaluation of recommender systems models this complexity for studies ad-
dressing the user experience.

In the following, we describe the individual aspects of the evaluation design space.

Types of Data

The essential basis for the evaluation of recommender systems is data. The characteristics
of data can be manifold and may depend on the type of data used for computing the
actual recommendations, among other factors. In the following, we give a brief overview
of the different characteristics of data that may be used when evaluating RS.

Implicit and Explicit Rating Data User ratings are usually collected by user behavior
observations, which may, for instance, include records on the items that a user consumed,
purchased, rated, viewed, or explored (e.g., pre-listening of songs), where the source may
be an existing dataset or one that is collected for the respective study. When relying
on the observation of user behavior when interacting with a RS, we typically distinguish
between explicit and implicit feedback [199, 220|. Explicit feedback is provided directly by
the user and the data unequivocally captures the user’s perception of an item. Platforms
that employ recommender systems frequently integrate mechanisms that allow users to
explicitly express their interests in or preference for a specific item via rating scales
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(e.g., b-star rating scale, likes, thumbs-up, or thumbs-down). The rating scales used
for providing explicit feedback usually allow for expressing both, positive and negative
preferences (e.g., a scale from “I like it a lot” to “I do not like it”).

Implicit feedback, in contrast, is inferred from a user’s observable and measurable be-
havior when interacting with a RS (e.g., purchases, clicks, dwell time). When relying on
implicit feedback, evaluations presume that, for instance, a consumed item is a quality
choice, while all other items are considered irrelevant [28]. Hence, implicit feedback is
typically positive only (e.g., purchase, click), while the absence of such information does
not imply that the user does not like an item (e.g., a user not having listened to a track
does not imply that the user does not like the track). Some scenarios also allow for
opportunities for negative implicit feedback such as, for instance, the skipping of songs.
Furthermore, implicit feedback can be used to infer relative preferences (for example, if
a user watched one movie ten times whereas other movies typically only once or play
counts of songs for a music RS). Thus, implicit feedback may be mapped to a degree of
preferences, thereby ranging on a continuous scale to its positive extremity [220]. When
interpreting implicit feedback, the assumption is that specific behavior is an indication
of quality, regardless of whether the behavior may have other causes; thus, for example,
closing a music streaming app may be mistakenly interpreted as a skip (i.e., negative
feedback) [60] or the behavior is influenced by interruptions or distractions [113].

Dimension Explicit Feedback Implicit Feedback
Accuracy High Low
Abundance Low High
Expressivity of user preference Positive and negative Positive
Measurement reference Absolute Relative

Table 11.3.: Characteristics of explicit and implicit feedback (adapted from Jawaheer,
Szomszor, and Kostkova [220]).

Most of the research in RS has focused on either explicit or implicit data [220], while
comparably few have combined these two heterogeneous types of feedback (e.g., [284,
293, 295]). Table 11.3 summarizes the characteristics of explicit and implicit feedback.
Explicit feedback provides higher accuracy than implicit feedback inferred from behav-
ior based on assumptions (e.g., the assumption that users only click on items they are
interested in). Typically, when users navigate through a platform that employs a RS,
an abundance of data about user behavior is logged. In contrast, users are reluctant to
explicitly rate items [189, 239|, which leads to comparably little explicit feedback data.
Note that explicit feedback tends to concentrate on either side of the rating scale because
users are more likely to express their preferences if they feel strongly in favor or against
an item [20].
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Although explicit and implicit feedback are heterogeneous types of feedback [220], re-
search investigating the relations between implicit and explicit feedback for preference
elicitation has shown that using implicit feedback is a viable alternative [345]. Still,
implicit measures may reveal aspects that explicit measures do not [461]—particularly
when user self-reports are not consistent with the actual user behavior. Integrating both,
observation of actual user behavior and users’ self-reports on intentions and perceptions,
may deliver rich insights for which each approach in isolation would be insufficient.

Note that many evaluation designs presume that a consumed item is a viable option also
in other contexts (e.g., another time, location, or activity) and consider item consump-
tion as a generally valid positive implicit feedback. What the user indeed experiences,
however, remains unclear. The validity of the feedback for other contexts depends on
the design of the feedback mechanism. For instance, an item rated with five stars may
be the user’s lifetime favorite, but still not suitable for a certain occasion (e.g., a ballad
for a workout, or a horror movie when watching with kids).

User, Item Information RS algorithms typically heavily rely on rating data for the com-
putation of recommendations, where the computations are mostly based solely on the
user-item matrix. However, these approaches have been shown to suffer from sparsity
and also, the cold-start problem, where recommendations for new items or users cannot
be computed accurately as there is not enough information on the user or item, respec-
tively. Therefore, metadata on the user, items, or context can also be incorporated to
further enhance recommendations (this information is often referred to as “side informa-
tion”) {140, 337|. For instance, keywords describing the item may be extracted from e.g.,
reviews on the item [18] or social ties between users can be extracted from relationships
in social networks [303, 456]. Furthermore, when working toward business-oriented goals
and metrics (cf. Section 11.3.4), data such as revenue information or click-through rates
also have to be logged and analyzed [208|. In addition, context information is useful
when users are expected to have different preferences in different contexts (e.g., watching
a movie in a cinema or at home [397]).

Qualitative and Quantitative Data Besides collecting behavioral user data (e.g., im-
plicit feedback logged during user interactions with the system), evaluations may also
rely on qualitative or quantitative evidence where data is gathered directly from the user.
Quantitative data collection methods are highly-structured instruments—such as scales,
tests, surveys, or questionnaires—, which are typically standardized (e.g., same ques-
tions, same scales). This standardization facilitates validity and comparability across
studies. Quantitative evidence allows for a deductive mode of analysis using statisti-
cal methods; answers may be compared and interrelated and allow for generalization
to the population. Qualitative evidence is frequently deployed to understand the sam-
ple studied. Commonly used data collection methods include interviews, focus groups,
and participant observations, where data is collected in the form of notes, videos, audio
recordings, images, or text documents [151].
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Natural and Synthetic Data Herlocker, Konstan, Terveen, and Riedl [190] distinguish
between natural and synthetic datasets. While natural datasets capture user interactions
with a RS or are directly derived from those, synthetic datasets are artificially created
(e.g., [115, 502]). Natural datasets contain (historical) data that may capture previous
interactions of users with a RS (e.g., user behavior such as clicks or likes), or data that
may be associated with those (e.g., data that reflects users attitudes and feelings while
interacting with a RS), or are derived from user interactions (e.g., turnover attributed to
recommendations). In cases where a natural real-world dataset that would be sufficiently
suitable for developing, training, and evaluating a RS is not available, a synthesized
dataset may be used. In such cases, a synthesized dataset would allow for particularly
modeling specific critical aspects that should be evaluated. For instance, a synthesized
dataset may be created to reflect out-of-the-norm behavior. Herlocker, Konstan, Terveen,
and Riedl [190] stress that a synthetic dataset should only be used in the early stages of
developing a RS and that synthesized datasets cannot simulate and represent real user
behavior. Yet, not only user-behavior-related data can be synthesized. For instance,
Jannach and Adomavicius [205] use fictitious profit values to investigate profitability
aspects of RS.

Data Collection

Data collection methods may be distinguished based on their focus on considering con-
temporary and historical events, where methods may rely on past events (e.g., existing
datasets, data retrieved from social media) or investigate contemporary events (e.g., ob-
servations, laboratory experiments) [497]. In the following, we give an overview of data
collection aspects.

User Involvement Evaluation methods may be distinguished with respect to user in-
volvement. While offline studies do not require user interaction with a RS, user-centric
evaluations need users to be involved, which is typically more expensive in terms of time
and money [174, 399]—which is especially true for online evaluations with large user
samples (cf. Section 11.3.3.

Randomized control trials are often considered the gold standard in behavioral science
and related fields. In terms of RS evaluation, this means that users are recruited for
the trial and randomly allocated to the RS to be evaluated (i.e., intervention) or to a
standard RS (i.e., baseline) as the control. This procedure is also referred to as A/B-
testing (e.g., [108, 252, 253|). Randomized group assignment minimizes selection bias,
keeping the participant groups that encounter an intervention or the baseline as similar as
possible. Presuming that the environment can control for all the remaining variables (i.e.,
keeping the variables constant), the different groups allow for comparing the proposed
system to the baselines. For instance, randomized control trials that are grounded on
prior knowledge (e.g., observations or theory) [478] and where the factors measured
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(and the instruments used for measuring these factors) are carefully selected may help
determine whether an intervention was effective [83|; explaining presumed causal links
in real-world interventions is often too complex for experimental methods.

While randomized control trials are conducted in laboratory settings, experiments in
field settings are typically referred to as “social experiments”. Thereby, the term social
experiment covers research in a field setting where investigators treat whole groups of
people in different ways [497|. In online environments, this is referred to as online field
experiment [94]. In field settings, the investigator’s control is only partly possible. Field
settings have the advantage that outcomes are observed in a natural, real-world environ-
ment rather than in an artificial laboratory environment—in the field, people are expected
to behave naturally. Overall, though, field experiments are always less controlled than
laboratory experiments, and field experiments are more difficult to replicate [289]. For
RS evaluation, an online field experiment [94] very often requires collaboration with a RS
provider from industry, who is commercially oriented and may not be willing to engage
in risky interventions that may cause losing users and/or revenues. However, e.g., for
the 2017 RecSys Challenge, the best job recommendation approaches (determined by
offline experiments) were also rolled out in XING’s productive systems for online field
experiments. Besides collaborating with industry, a number of online field experiments
have been carried out using research systems (e.g., MovieLens) (e.g., [94, 519]). However,
when carrying out a study with a research system, one also has to build a user community
for it. Generally, this is often too great an investment just to carry out an experiment.
This is why many researchers have argued for funding shared research infrastructure (in
both Europe and the USA) including a system with actual users [255].

It is important to note that it is rarely feasible to repeat studies with user involvement for
a substantially different set of algorithms and settings. System-centric (offline) evalua-
tions are, in contrast, easily repeatable with varying algorithms [174, 190, 399]. However,
offline evaluations have several weaknesses. For instance, data sparsity limits the coverage
of items that can be evaluated. Also, the evaluation does not capture any explanations
why a particular system or recommendation is preferred by a user (e.g., recommenda-
tion quality, aesthetics of the interface) [190]. Knijnenburg et al. [247, 249] propose
a theoretical framework for user-centric evaluations that describes how users’ personal
interpretation of a system’s critical features influences their experience and interaction
with a system. In addition, Herlocker, Konstan, Terveen, and Riedl [190] describe various
dimensions that may be used to further differentiate user study evaluations. Examples
for user-centric evaluations can, for instance, be found in the following sources: [103, 124,
135, 398].

Overall, while system-centric methods without user involvement typically aim to evaluate
the RS from an algorithmic perspective (e.g., in terms of accuracy of predictions), user
involvement opens up possibilities for evaluating user experience [399].

"http://2017 .recsyschallenge.com/
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User Feedback Elicitation At the core of many recommender systems are user prefer-
ence models. Building such models requires eliciting feedback from users, for which—at
runtime—data is typically collected while users interact with the RS. For evaluation
purposes, we can leverage a wider variety of methods for data collection. For instance,
besides considering interaction logs, observation [237] may be used to elicit users’ behav-
ior. An alternative method is to ask users for their behavior or intentions in a particular
scenario. Such self-reports may be directed to reports on what they have done in the
past or what users intend to do in a certain context. However, self-reports may not
be consistent with user behavior [85, 264, 461| because the link between an individual’s
attitude and behavior is generally not very strong [16]. Furthermore, the process of
reporting on one’s behavior may itself induce reflection and actual change of behavior,
which is known as the question-behavior effect [439]. It is, thus, good practice to com-
bine self-report data with other information or to apply adjustment methods because
such an assessment considering several perspectives is more likely to provide an accurate
picture [19].

For the elicitation of feedback on user experience, Pu, Chen, and Hu [364] propose an
evaluation framework, called ResQue (Recommender systems’ Quality of user experience)
that aims to evaluate a comprehensive set of features of a RS: the system’s usability, use-
fulness, interaction qualities, influence of these qualities on users’ behavioral intentions,
aspects influencing the adoption, etc.. ResQue provides specific questionnaire items and
is, thus, considered highly operational. Knijnenburg, Willemsen, Gantner, Soncu, and
Newell [249]’s framework for the user-centric evaluation of recommender systems takes
a more abstract approach. It describes the structural relationships between the higher-
level concepts without tying the concepts to specific questionnaire items. Therefore, it
provides the flexibility to use and adapt the framework for various RS purposes and
contextual settings and allows researchers to define and operationalize a set of specific,
lower-level constructs. Both frameworks (i.e., Knijnenburg, Willemsen, Gantner, Soncu,
and Newell [249] and Pu, Chen, and Hu [364]) may be integrated in user studies and
online evaluations alike.

Existing Datasets One advantage of relying on existing datasets is that (offline) evalu-
ations can be conducted early in a project. In comparison to soliciting and evaluating
contemporary events, it is frequently “easier” and less expensive in terms of money and
time to rely on historical data [174]. Also, by utilizing popular datasets (e.g., the Movie-
Lens dataset [181]), results can be compared with similar research. However, such an
evaluation is restricted to the past. For instance, the goal of a leave-n-out analysis [64]
is to analyze to which extent recommender algorithms can reconstruct past user interac-
tions. Hence, such an evaluation can only serve as a baseline evaluation measure because
it only considers items that a user has already used in the past; assuming that unused
items would not be used even if they were actually recommended [174|. Additional items
that users might still consider useful are not considered in the evaluation because ratings
for these items are not contained in the dataset [506]. This is also stressed by Gunawar-
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dana, Shani, and Yogev [174] by the following scenario: “For example, a user may not
have used an item because she was unaware of its existence, but after the recommenda-
tion exposed that item the user can decide to select it. In this case, the number of false
positives is overestimated.”

Another risk is that the dataset chosen might not be (sufficiently) representative—the
more realistic and representative the dataset is for real user behavior, the more reliable
the results of the offline experiments are [174]. In fact, the applicability of the findings
gained in an evaluation based on a historic dataset is highly impacted by the “quality,
volume and closeness of the evaluation dataset to the data which would be collected by
the intended recommender system” [154].

Table 11.4 lists datasets widely used for evaluating recommender systems and their main
characteristics such as the domain, size, rating type, and examples of papers that have
utilized the dataset in the evaluation of their system. There are different MovieLens
datasets, differing in the number of ratings contained (from 100K ratings in the ML100K
dataset to 20M ratings in the ML20M dataset; we list ML1M and ML20M in the table).
Alternatively, the yearly conducted RecSys-Challenge® also provides datasets from a
yearly changing application domain and task (including job, music, or accommodation
(hotel) recommendation).

Dataset Domain Size

MovieLens20M? [181] Movie ratings 20,000,263 ratings; range [0.5,5]
MovieLensIM!© [181] Movie ratings 1,000,209 ratings; range [1,5]
BookCrossing!! [524] Book ratings 1,157,112 ratings; range [1,10]
Yelp'? Business ratings 8,021,122 ratings; range [0,5]
MovieTweetings'® [125] Movie ratings 871,272 ratings; range [0,10]

Table 11.4.: Widely used datasets for evaluating RS.

Data Quality and Biases

An important factor for RS evaluation is the quality of the data underlying the evalua-
tions. This also includes potential biases that may be contained in the data used for the
evaluation. Such biases may occur in the distributions of users, items, or ratings that
are selected to be part of the evaluation dataset. As Gunawardana, Shani, and Yogev
[174] note, a typical example of a bias that is introduced when assembling the evalua-

8http://www.recsyschallenge.com/

Yavailable for download at https://grouplens.org/datasets/movielens/

Oavailable for download at https://grouplens.org/datasets/movielens/

Havailable for download at http://www2.informatik.uni-freiburg.de/~cziegler/BX/
12available for download at https://www.yelp.com/dataset

Bavailable for download at https://github.com/sidooms/MovieTweetings
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tion dataset is excluding users or items with low rate counts from the dataset. Careful
curation of datasets by e.g., using random sampling methods for limiting the size of the
dataset to reduce the experimentation time is crucial to avoid such biases. Another as-
pect that may influence data biases is the collection method [174], where users do not
provide feedback that is evenly distributed among items as, for instance, users tend to
rate items that they particularly like or dislike. However, methods such as resampling or
reweighting may be used for correcting such biases [444, 445].

Adomavicius and Zhang [12] investigated the characteristics of rating data and their
impact on the overall recommendation performance. The characteristics they used for
describing rating datasets are (i) overall rating density (i.e., the degree to which the user-
item matrix is filled), (ii) rating frequency distribution (i.e., how ratings are distributed
among items; rating data often exhibits a long-tail distribution [22, 344]), and (iii) the
variance of rating values. In a set of experiments, the authors find that the recommen-
dation performance is highly impacted by the structural characteristics of the dataset,
where rating density and variance exhibit the highest impact.

Evaluation Metrics

There is an extensive number of facets of RS that may be considered when assessing the
performance of a recommendation algorithm [173, 174|. Consequently, also the evaluation
of RS relies on a diverse set of metrics, which we briefly summarize in the following. The
presented metrics can be utilized for different experiment types, however, we note that
due to the dominance of offline experiments, most of the presented metrics stem from
offline settings.

In their early work on RS evaluation, Herlocker, Konstan, Terveen, and Riedl [190] differ-
entiate metrics for quantifying predictive accuracy, classification accuracy, rank accuracy,
and prediction-rating correlation. Along the same lines, Gunawardana and Shani [173]
investigate accuracy evaluation metrics and distinguish metrics based on the underly-
ing task (rating prediction, recommending good items, optimizing utility, recommending
fixed recommendation lists). Said, Tikk, Stumpf, Shi, Larson, and Cremonesi [399] clas-
sify the available metrics into classification metrics, predictive metrics, coverage metrics,
confidence metrics, and learning rate metrics. In contrast, Avazpour, Pitakrat, Grunske,
and Grundy [30] provide a more detailed classification, distinguishing 15 classes of evalu-
ation dimensions; these range, for instance, from correctness to coverage, utility, robust-
ness, and novelty. Gunawardana, Shani, and Yogev [174] distinguish prediction accu-
racy (rating prediction accuracy, usage prediction, ranking measures), coverage, novelty,
serendipity, diversity, and confidence'*. Chen and Liu [90] review evaluation metrics from

! Gunawardana, Shani, and Yogev [174] list further aspects that need to be evaluated, such as trust and
risk, which are typically assessed via questionnaires. We do not cover these aspects here and kindly
refer the interested reader to the original manuscript.
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four different perspectives (or rather, disciplines): machine learning (e.g., mean absolute
error), information retrieval (e.g., recall or precision), human-computer interaction (e.g.,
diversity, trust, or novelty), and software engineering (e.g., robustness or scalability).

In the following, we discuss the most widely used categories of evaluation metrics. Ta-
ble 11.5 gives an overview of these metrics, which we classify along the lines of previous
classifications. For an extensive overview of evaluation metrics in the context of rec-
ommender systems, we refer to [90, 160, 173, 174, 190, 346, 425]. Several works [395,
454] have shown that the metrics implemented in different libraries for RS evaluation
(Section 11.3.4) sometimes use the same name while measuring different things, which
leads to different results given the same input. Similarly, Bellogién and Said [47] report
that papers present different variations of metrics (e.g., normalized vs non-normalized;
computed over the entire dataset or on user-basis and then averaged); and sometimes the
details of the evaluation protocol are not reported in papers |47, 74]. Tamm, Damdinov,
and Vasilev [454] conclude that the more complex a metric is, the more room there is
for different interpretations of the metric, leading to different variations of metric im-
plementations. As a result, this might lead to misinterpretations of results within an
evaluation [454], and limits the comparability across evaluations [47, 74, 395, 454]. In
line with previous works [47, 74|, we urge for a more detailed description of evaluation
protocols as this will strengthen reproducibility and improve accountability [47].

Fundamentally, we emphasize that it is important to evaluate a RS with a suite of
metrics because a one-metric evaluation will—in most cases—be one-sided and cannot
characterize the broad performance of a RS. When optimizing a RS for one metric, it
is crucial to also evaluate whether this optimization sacrifices performance elsewhere in
the process [160, 190]. For instance, it is doubtful whether a RS algorithm optimized
for prediction accuracy while sacrificing performance in terms of diversity, novelty, or
coverage is overall desirable. Similarly, a RS that performs equally across various user
groups but for all groups with similarly low accuracy and low diversity will not likely
reach a good user experience for any user. It is, thus, crucial to measure—and report—a
set of complementary metrics. In many cases, it will be key to find a good balance across
metrics.

Prediction accuracy refers to the extent to which the RS can predict user ratings [174,
190]. These include error metrics that quantify the error of the rating prediction per-
formed by the RS (i.e., the difference between the predicted rating and the actual rating
in a leave-n-out setting). The most widely used prediction accuracy metrics are mean
absolute error and root mean squared error.

Usage prediction metrics can be seen as classification metrics that capture the rate of
correct recommendations—in a setting where each recommendation can be classified as
relevant or non-relevant [173, 174, 190]. This involves binarizing ratings such as, e.g.,
on a rating scale of 1-5 considering ratings of 1-3 as non-relevant and ratings of 4 and
5 as relevant. The most popular usage prediction metrics are recall, precision, and the
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Category Metrics References
. Mean absolute error (MAE) [190, 430]
Prediction accuracy
(Root) Mean squared error ((R)MSE) [190, 430]
Recall, precision, F-score [99, 473]
Usage prediction Receiver operating characteristic curve (ROC) [451]
Area under ROC curve (AUC) [35]
. Normalized discounted cumulative gain (NDCG) [219]
Ranking )
Mean reciprocal rank (MRR) [477]
Novelty Item novelty ‘ [76]
Global long-tail novelty [81, 230]
Diversity Intra-list diversity [524]
Item coverage [160, 190]
Coverage User space coverage [160, 174]
Gini index [174]
Serendipity Unexp(-ec.tedness [190]
Serendipity [230, 326]
. Value unfairness [496]
Fairness across users .
Absolute unfairness [496]
Over /underestimation of fairness [496]
. ) Pairwise fairness [49]
Fairness across items .
Disparate treatment ratio (DTR) [435]
Equal expected exposure [119]
Equity of amortized attention [50]
Disparate impact ratio (DIR) [435]
Viable-A test [401]
Click-through rate (CTR) [111, 159, 165]
Business-oriented Adoption and conversion rate [111, 165]
Sales and revenue [91, 274]

Articles providing an overview of metrics: [90, 160, 173, 174, 190, 346, 425].

Table 11.5.: Overview of evaluation metrics.
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F-score, which combines recall and precision. Precision is the fraction of recommended
items that are also relevant. In contrast, recall measures the fraction of relevant items that
are indeed recommended. Often, this includes restricting relevant items to the k most
relevant items, where the system’s ability to identify the £ most suitable items for a user
is captured as opposed to evaluating all recommendations (often referred to as recall@k
or precision@k, respectively) [190]. Alternatively, the receiver operating characteristic
curve can also be used to measure usage prediction, where the true positive rate is plotted
against the false positive rate for various recommendation list lengths k. These curves
can also be aggregated into a single score by computing the area under the ROC curve
(AUC).
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Ranking metrics are used to quantify the quality of the ranking of recommendation
candidates [173, 346]. Relevant recommendations that are ranked higher are scored
higher, whereas relevant documents that are ranked lower are provided a discounted score.
Typical ranking metrics include normalized discounted cumulative gain (NDCG) [219],
or mean reciprocal rank (MRR) [477].

Diversity refers to the dissimilarity of the items recommended |76, 230, 269, 474], where
low similarity values mean high diversity. Diversity is often measured by computing the
intra-list diversity [437, 524| and thereby, aggregating the pairwise similarity of all items
on the recommendation list. Here, similarity can be computed, e.g., by Jaccard or cosine
similarity [230].

Novelty metrics aim at measuring to which extent recommended items are novel [76].
Item novelty [201, 523| refers to the fraction of recommended items that are indeed new
to the user, whereas global long-tail novelty measures the global novelty of items—i.e.
if an item is known by few users and hence, is in the long tail of the item popularity
distribution [64, 81].

Serendipity describes how surprising recommendations are to a user and hence, is tightly
related to novelty [230, 326]. However, as Gunawardana, Shani, and Yogev [174] note,
recommending a movie staring an actor that the user has liked in the past might be
novel, but not necessarily surprising to the user. The so-called unexpectedness measure
compares the recommendations produced by a serendipitous recommender to the rec-
ommendations computed by a baseline [326]. Building on the unexpectedness measure,
serendipity can be measured by the fraction of relevant and unexpected recommendations
in the list [230] or the unexpectedness measure [6].

Coverage metrics describe the extent to which items are actually recommended |7, 160].
This includes catalog coverage (i.e., the fraction of all available items that can be recom-
mended; often referred to as item space coverage) [399], user space coverage [174] (i.e.,
the fraction of items that are recommended to a user; often also referred to as prediction
coverage [160]), or measuring the distribution of items chosen by users (e.g., by using the
Gini index or Shannon entropy) [174]. Coverage metrics are also used to measure fairness
because coverage captures the share of items or users that are served by the RS.

Fairness metrics concern both, fairness across users and across items. In both cases,
fairness may be captured at the level of the individual or at group level. Individual
fairness captures fairness (or unfairness) at the level of individual subjects [50] and implies
that similar subjects (hence, similar users or similar items) are treated similarly [128].
Group fairness defines fairness on a group level and requires that salient subject groups
(e.g., demographic groups) should be treated comparably [129]; in other words, group
fairness is defined as the collective treatment received by all members of a group [50].
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A major goal of group fairness is that protected attributes—for instance, demographic
traits such as age, gender, or ethnicity—do not influence recommendation outcomes due
to data bias or model inaccuracies and biases |50, 427].

Fairness across users is typically addressed at the group level. One way to address
group fairness from the user perspective is to disaggregate the user-oriented metrics to
measure and compare to which extent user groups are provided with lower-quality rec-
ommendations (e.g, [130, 131, 138, 202, 267, 315, 427]). Yao and Huang [496] propose
three (un-)fairness metrics: value unfairness measures, whether groups of users receive
constantly lower or higher predicted ratings compared to their true preference; absolute
unfairness measures the absolute difference of the estimation error for groups, and un-
der/overestimation of fairness measures inconsistency in the extent to which predictions
under- or overestimate the true ratings.

Fairness across items addresses the fair representation of item groups [50] and it is
addressed at group level and at the level of individual items, too. The goal of many
metrics is to measure the exposure or attention [50, 435] an item group receives and
assess the fairness of this distribution: in a ranked list of recommendations, lower ranks
are assumed to get less exposure and, thus, less attention.'® Beutel, Chen, Doshi, Qian,
Wei, Wu, Heldt, Zhao, Hong, Chi, and Goodrow [49] propose the concept of pairwise
fairness, which aims to measure whether items of one group are consistently ranked lower
than those of another group. Other metrics put exposure across groups and relevance
of items into relation. The disparate treatment ratio (DTR) [435] is a statistical parity
metric that measures exposure across groups proportional to relevance. Diaz, Mitra,
Ekstrand, Biega, and Carterette [119] consider the distribution over rankings instead of
a single fixed ranking. The idea behind the principle of equal expected exposure is that
“no item should receive more or less expected exposure than any other item of the same
relevance grade” [119]. Biega, Gummadi, and Weikum [50] capture unfairness at the
level of individual items; they propose the equity of amortized attention, which indicates
whether the attention is distributed proportionally to relevance when amortized over a
sequence of rankings. The disparate impact ratio (DIR) [435] goes further than exposure
and considers the impact of exposure: DIR measures across items groups, whether items
obtain proportional impact in terms of the click-through rate. The viable-A test [401]
accounts for varying user attention patterns through parametrization in the measurement
of group fairness across items.

Business-oriented metrics are used by service providers to assess the business value of
recommendations [208]. While service providers naturally are interested in user-centered
metrics as positive user experience impacts revenue, business-oriented metrics allow
to directly measure click-through-rates [111, 159, 165, 236], adoption and conversion

15While many approaches assume logarithmic discounting of attention [435], also other approaches
exist, too (for example, using a geometric distribution [50] or parametrizing varying attention pat-
terns [401]).
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rates [111, 165|, and revenue [91, 274]. Click-through rates measure the number of
clicks generated by recommendations, whereas adoption and conversion rates measure
how many clicks actually lead to the consumption of recommended items. Therefore,
adoption and conversion rates, and even more so, the sales and revenue generated by
recommended items, more directly measure the generated business value of recommen-
dations.

Evaluation System

Involving users in evaluations requires a (usually graphical) user interface to allow users
to interact with the system. In RS evaluation, different options are available concerning
the extent to which the evaluated system is incorporated in a real-world or industry
environment. This aspect is highly interwoven with the choice of whether to involve
users in the evaluation. For an offline algorithmic evaluation, there is no need to provide
a user interface, as no users are involved. However, measuring user experience requires
the involvement of users and, hence, a user interface. Konstan and Riedl [256] distinguish
three designs of systems for evaluation: (i) systems dedicated to experimental use, which
may range from interfaces for purely experimental research to more sophisticated systems;
(ii) collaborating with operators of real-world (industry) systems for online field (real-
world) experiments; and (iii) developing and maintaining a research system and (large)
user community for (long-term) evaluations.

Also, “bad” user interface design may bias the assessment of RSs because they affect the
users’ overall experience [101, 365]. Users may evaluate recommendations differently if
they were presented by a improved user interface. Putting effort into a good (or neutral)
user interface design is expensive. Maintenance costs for a dedicated research system are
high, too. Likewise, acquiring a large set of users may be challenging. All these issues
contribute to the low adoption of non-offline evaluations.

Generally, there are several RS evaluation frameworks. Most of these libraries are pri-
marily for offline evaluations and hence, provide a set of recommender algorithms and an
evaluation framework. These frameworks include, for instance, LensKit [133, 137], My-
MediaLite [157], LibRec [175], Rival [395, 396], Surprise [200], or ELLIOT [25]. Recently,
Beel, Collins, Kopp, Dietz, and Knoth [41] proposed a “living-lab” for online evaluations
of scholarly recommender systems that can be used on top of a production recommender
system and logs all user actions (clicks, purchases, etc.) to evaluate the algorithms’
effectiveness in online evaluations and user studies.
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11.4. Mapping a Fictitious Case to FEVR

In the following, we first present a fictitious case as an example evaluation. Then, we
showcase how this scenario can be mapped to the FEVR framework (Section 11.4.1) and
discuss the limitations of this evaluation configuration (Section 11.4.2).

The context of the example is as follows: in an academic setting, a group of researchers
has developed a novel recommendation algorithm, termed RecAlg, that aims to improve
the item diversity of music recommendations by incorporating audio and lyrics features
of tracks, while also improving (or, at least, maintaining) prediction accuracy. The goal
is to support users in finding likable music by providing personalized music recommen-
dations.

11.4.1. Mapping to FEVR

With this example case, we revisit the major components of the proposed FEVR frame-
work and discuss the design components regarding the evaluation of the RS. We provide a
compact overview of the design components of the example case in Table 11.6. Note that
the evaluation principles component draws from the other components and is discussed
at the end of this section.

As for the evaluation objectives, the overall goal is to evaluate whether users are indeed
able to find likable music when provided with recommendations computed by the novel
RecAlg algorithm. The stakeholders addressed are naturally the users of the system (al-
gorithm), but—as the proposed algorithm aims to improve the diversity of recommended
tracks—artists could also benefit from this increased item diversity as a more diverse set
of artists may now be represented in the set of recommended tracks. As for the properties
evaluated, the researchers aim to evaluate the diversity of recommendations; particularly,
the change in catalog coverage (and hence, the change to items in the long tail of the
popularity curve). FEVR’s evaluation design space (cf. Fig. 11.2 for a graphical overview
of the core components) encompasses the main evaluation principles, which we discuss
in the following. As experiment type, the group of researchers chooses to perform an
offline evaluation to assess the basic algorithmic performance of RecAlg (that still needs
to be confirmed in later user-centric evaluations to evaluate whether users do indeed also
perceive the provided recommendations as more diverse and accurate).

The evaluation aspects that need to be considered in this evaluation encompass the data
to be used, but also the evaluation system and the evaluation metrics applied. As this
example is situated in a scientific setting, offline experiments can be performed using an
existing evaluation framework. In this particular case, the ELLIOT [25] framework is cho-
sen. As for the data used for the evaluation, the researchers rely on an extensive dataset
of listening events, namely the LFM-2b dataset [410]. This dataset contains 2 billion
listening events (i.e., a user has listened to a particular song) which represent implicit
feedback as well as detailed side information on the music tracks contained. LFM-2b is
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FEVR Component Brief Description

Evaluation Objectives

Overall Goal To evaluate whether users are able to find likable music in
the recommendations computed by the novel RecAlg
algorithm

Stakeholders Users of the system (algorithm)

Artists may also benefit from an increased item diversity as
a more diverse set of artists may be represented

Properties Item diversity in the recommendations; catalog coverage
Evaluation Principles

Hypothesis / Hi: RecAlg provides users (on average) with more diverse
Research Question recommendations with respect to the intra-list diversity

while maintaining prediction accuracy compared to the
baseline algorithm.

Control Variables Follow accountability framework by Bellogién and Said [47]
(for randomization in dataset splitting to prevent selection
bias)

Generalization Power  Limited due to lack of user involvement and dataset biases

Reliability Follow accountability framework by Bellogién and Said [47]

Experiment Type Offline Evaluation with A/B-testing

Evaluation Aspects

Types of Data Implicit ratings (listening events), side information for music
tracks

Data Collection LFM-2b dataset [410]

Data Quality and Platform bias, popularity bias, skewed gender distribution,

Biases imbalanced country distribution.

Evaluation Metrics Prediction accuracy with RMSE; intra-list diversity in terms

of different unique artists
Evaluation System Existing evaluation framework ELLIOT [25]

Table 11.6.: FEVR: Overview of Example Evaluation.

the most extensive and recent public dataset in the domain. In the experimental setup,
users for the training, test, and validation sets are chosen randomly to avoid introducing
biases in this step. The metrics employed directly reflect the goals of our evaluation: for
quantifying RecAlg’s prediction accuracy, the group of researchers rely on RMSE and for
measuring the diversity of recommendation lists, they rely on intra-list diversity. As for
the evaluation principles, the main hypothesis is that the novel RecAlg approach pro-
vides users with more diverse recommendations concerning the intra-list diversity while
maintaining prediction accuracy. The generalization power of this evaluation is limited
in the sense that it does not involve users, the dataset used encompasses biases, and the
fact that implicit feedback data was used. For a further discussion on the limitations of
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this evaluation, please refer to Section 11.4.2. To ensure the reliability of the conducted
experiments and to control for confounding factors, the group of researchers follows the
accountability framework by Bellogién and Said [47].

With this example evaluation scenario, we have illustrated how an evaluation configura-
tion can be mapped to FEVR and demonstrated that FEVR can be used as a checklist for
an evaluation configuration. However, we note that this described evaluation scenario is
a very basic one and has limitations, which we discuss in the following (Section 11.4.2).

11.4.2. Limitations and Discussion

As for any kind of offline evaluation with a publicly available dataset, the generalization
power is limited due to the inherent biases in the dataset. First and foremost, there
is a platform bias and evaluation results would not generalize to other music streaming
platforms or even to other application domains. This and other dataset biases (e.g.,
skewed gender distribution of users, imbalanced distribution across user countries) may
be addressed by extending the evaluation by integrating further datasets. Comparing
evaluation results across datasets provides the opportunity to reason across all results
and, thereby, increases the generalizability of findings.

Furthermore, the presented example evaluation builds on assumptions which are—at
least in the scenario presented—not grounded on prior knowledge and not justified with
respective pointers to underlying theory or observations. Many assumptions concern a
user’s need for diversity and their perceived diversity. The evaluation setting is built on
a set of assumptions including that users indeed enjoy or even want artist diversity in
their playlists, that all users have similar diversity needs, that an individual’s diversity
need is constant (i.e., context-independent), and that individuals perceive the provided
recommendations as diverse as the intra-list metric suggests. With a lack of literature on
those topics, it is necessary to integrate additional methods in the evaluation to explore
and clarify these assumptions (and to obtain a more comprehensive picture of the exper-
iment’s results). Frequently, this will require a mixed methods research approach [107]
where quantitative and qualitative research methods are combined. A recent tutorial
at the ACM SIGKDD Conference on Knowledge Discovery & Data Mining 2021 [442]!6
demonstrates how a mixed-methods approach is used in real-world (industry) settings
(specifically, the tutorial presents case studies from Spotify) to analyze and justify as-
sumptions, develop business-oriented metrics, so that further evaluation steps are valid
and reliable.

Finally, the results of the presented evaluation will give direction about the next evalua-
tion steps. Hence, the evaluation results will inform whether the novel RecAlg algorithm

16The slides of the tutorial can be found at https://github.com/kdd2021-mixedmethods. A similar case
study has already been presented at the tutorial on “Mixed methods for evaluating user satisfaction”
at ACM RecSys 2018 [158].
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achieves sufficient performance to be further evaluated in, for instance, a user study (e.g.,
by particularly considering diversity perception). Unsatisfactory results will suggest re-
visiting the algorithm and exploring further opportunities. Again, FEVR can serve as a
checklist for the configuration of the next evaluation step.

11.5. Discussion, Conclusion, and Future Directions

The review of literature on RS evaluation shows that finding an adequate configuration
for the comprehensive evaluation of a RS is a complex endeavor; the evaluation design
space is rich, and finding an adequate configuration may be challenging. In this paper,
we consolidate and systematically organize the dispersed knowledge on RS evaluation.
With FEVR, we provide a basis, overview, and guidance for researchers as a profound
source for orientation in evaluating RS.

Still, for RS to work in practice (i.e., in industry) as well as for the research community to
advance, we have to engage in a more comprehensive evaluation of RS—an evaluation that
embraces the entire RS and its context of use and does not only address single dimensions
in isolation. Yet, to date, such a comprehensive evaluation approach is hardly adopted
in RS research.

From a practical perspective, the reasons for the low adoption of comprehensive evaluation—
and the excessive use of offline evaluation only—are manifold [77]: (a) identifying an
adequate combination of evaluation designs and configurations (more broadly speaking,
aspects that can and need to be addressed together) meeting the evaluation objectives
may be a complex task (particularly for inexperienced researchers); (b) the costs for
involving users in the evaluation process are high (compared to pure offline studies);
(c) integrating results of multiple evaluation designs and configurations into an entire
study is complex and drawing conclusions from components effectively across the entire
study can be challenging; and (d) evaluations considering multiple methods require ade-
quate skills in various (at least two) evaluation methods. Senior researchers tend to have
a preference for one method [353] and apply methodologically what they are strong at,
which also prevents young researchers from learning (and possibly adopting) additional
methodical approaches. While these reasons for non-adoption are all plausible, we argue
that the goal should be to use the most adequate evaluation setting for set evaluation
objectives. In many cases, this will require an integration of multiple evaluation designs.
This comes with several challenges:

e Methodological issues. Jannach, Mobasher, and Berkovsky [213] point to method-
ological issues and research practices in RS evaluation where novel recommender
approaches are compared to weak (e.g., non-optimized) baselines [143, 144, 301].
Showing “phantom progress”, as Ludewig, Mauro, Latifi, and Jannach [301] term
it, hamper the progress of research and is of little value for evaluating the rec-
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ommender approach under investigation. Along this line comes the need for good
evaluation protocols that are documented in papers with sufficient detail [47, 74]
to strengthen reproducibility. Yet, using many different metric variants—even if
properly documented—hinders the comparability across works. Accordingly, the
development and establishment of standardized protocols is a core issue that the
community needs to address for advancing the field.

Methodological competencies. Employing a comprehensive RS evaluation requires
researchers to build competencies in a set of methods as expertise in only one
method is insufficient. Furthermore, consolidating these methods’ results into an
integrated picture of the system’s quality and the perceived quality of the RS is
another skill set that has to be developed.

Datasets. A crucial task is to find or elicit datasets that are sufficiently repre-
sentative of the use case that the RS is evaluated for. Reducing biases inherent
in real-world data is considered one of the key challenges [56]. Furthermore, Jan-
nach and colleagues [213, 215] call for the evaluation of RS’ longitudinal effects.
One of the challenges involved is to obtain a rich dataset over a long period of
time in a comparable manner. With the fast-paced progress in RS research, RS
approaches are continually being updated and fine-tuned and datasets embracing
a longer period do likely encompass dynamics of having different RS approaches
active at different times.

Multi-stakeholder RS. Research on multi-stakeholder RS is currently still in its
infancy. For evaluation, we can observe “a diversity of methodological approaches
and little agreement on basic questions of evaluation” [1].

Conversational RS. Although conversational RS seem to advance at an acceler-
ated pace, no consensus on how to evaluate such systems has evolved yet [212].
For instance, conversational RS rely on natural language processing (NLP), and
evaluating language models and generation models is itself an inherently complex
task [212]. Using and evaluating such models in task-oriented systems such as
conversational RS might be even more challenging [212].

Domain-specifics. The quality of recommendations depends on the particular do-
main or application. For a news recommender, the recency of items is important.
In the music domain, recommenders are often considered useful when they sup-
port discovery of the back catalog. In tourism, the geographical vicinity might
be relevant. The evaluation configuration has to take such domain-specifics into
account [207]. This requires deep domain knowledge (and data), which frequently
requires collaborating with domain experts in academia and industry. Evaluation
without domain expertise bears the risk of being based on wrong assumptions.
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o Multi-* evaluations. Comprehensive evaluations encompassing the required multi-
facettedness (e.g., multi-method, multi-metrics, multi-stakeholder) appears to be
an adequate and necessary pathway for RS evaluation. The key issue is that we
need to establish evaluations that are apt to characterize the broad performance
of a RS, which can only be accomplished with thoughtful integration of multiple
methods. This requires an evaluation culture where a suite of metrics is evaluated
and reported, and where the needs of the multiple stakeholders of RS are considered.
The hurdles of such evaluations, including involved costs, required skills, etc. are—
undeniably—impediments we need to take up and overcome these challenges to
advance recommender systems and the field of recommender systems at large. Yet,
this seems to require a paradigm shift in our research community’s evaluation
efforts [207].

While FEVR framework provides a structured basis to adopt adequate evaluation con-
figurations, we—as a community—have to move forward together: it is on us to adopt,
apply, and establish suitable practices.
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