
Song Popularity Prediction using Ordinal Classi�cation

Michael V¤otter, Maximilian Mayerl, Eva Zangerle, G¤unther Specht
Department of Computer Science

Universit¤at Innsbruck
Innsbruck, Austria

ffirstname.lastnameg@uibk.ac.at

ABSTRACT

Predicting a song’s success based on audio descriptors be-
fore its release is an important task in the music industry,
which has been tackled in many ways. Most approaches
utilize audio descriptors to predict a song’s success, typi-
cally captured by either chart positions or listening counts.
The popularity prediction task is then either modeled as
a regression task, where the popularity metric is precisely
predicted, or as a classi�cation task by, e.g., transforming
the popularity task to distinct classes such as hits and non-
hits. However, this way of modeling the task neglects that
most popularity measures form an ordinal scale. While
classi�cation ignores the order, regression assumes that the
data is in interval (or ratio) scale. Therefore, we propose to
model the task of popularity prediction as an ordinal clas-
si�cation task. Further, we propose an approach that uti-
lizes the relative order of classes in an ordinal classi�cation
setup to predict the popularity (class) of songs. Our pre-
sented approach requires a machine learning model able
to predict the relative order of two pieces of music, and
hence can �exibly be applied using many types of pre-
dictors. Furthermore, we investigate how different ways
of mapping the underlying popularity metrics to ordinal
classes in�uence our model. We compare the proposed
approach with regression as well as classi�cation models
and show its robustness w.r.t. different numbers of ordi-
nal classes and the distribution of the number of songs
assigned to them. Additionally, we show that, for some
prediction settings, our approach results in a better predic-
tive performance than classical regression and classi�ca-
tion approaches, while it achieves similar predictive per-
formance on other settings.

1. INTRODUCTION

Song popularity prediction is an important task in the mu-
sic industry, where sales, charts, or listening data are used
to determine the popularity of music. The goal is to pre-
dict the success of a song before or shortly after its release.
Such systems could be utilized by musicians to tweak their
songs towards success. For instance, they could use such

Copyright: © 2023 Michael Vötter et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

predictors during the creation process of a song to deter-
mine if a given song will be successful. Record labels
could use such a system to determine which songs they
should support and promote.

To this end, the song popularity prediction task is either
modeled as a regression [1�3] or classi�cation task [4�6].
Existing approaches make use of audio descriptors such as
Essentia audio features [7] for prediction. To determine the
popularity of songs, chart-based measures such as peak po-
sition and number of weeks in charts and listener- and play
counts on streaming platforms are used. Typically, they are
gathered from the Billboard Hot 100 charts 1 among other
country-speci�c charts or from streaming platforms such
as last.fm 2 and Spotify 3 . A wide range of machine learn-
ing approaches such as linear models [8, 9], SVM mod-
els [6, 8, 10], tree models [5], and neural network mod-
els [1�3] have been used for prediction. In a recent work,
we present two datasets (HSP-S and HSP-L) [11] and com-
pared such models on both types of prediction tasks in our
follow-up work [12].

Despite these previous efforts, modeling the song popu-
larity prediction task as either a regression or classi�cation
task is insuf�cient. Modeling it as a regression task as-
sumes equidistant and continuous popularity values, while
modeling it as a classi�cation task ignores the natural or-
der encoded in the utilized measures of popularity. Hence,
modeling it as a regression task requires that the result-
ing popularity measure is continuous. This is obviously
not the case for popularity measures such as chart position,
as they are always given as positive integers. Further, not
all popularity measures allow assuming equidistant gaps
between successive popularity values. E.g., chart metrics
such as the weeks in charts contradict this assumption, as
all songs that did not made it to the charts exhibit a value
of zero. Obviously, the songs that did not make it into
the charts are not all equally popular. Similar arguments
are valid for listening event-based measures of popularity.
Again, listener counts and play counts are always positive
integers. Further, songs that have no listening events on
a particular platform are not necessarily equally popular.
Additionally, metrics based on listening events have a high
resolution in terms of distinct popularity values and form
a power scale. We argue that predictions do not have to
be that �ne-grained to be useful for the previously men-
tioned applications. Considering the fact that these counts

1 https://www.billboard.com/charts/hot-100
2 https://www.last.fm/
3 https://www.spotify.com/

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

346



are in power scale, it is quite obvious that different �lev-
els� of popularity show a large difference in the number of
listening events, especially when considering truly popu-
lar songs. Hence, we argue that binning successive values
to reduce the number of distinct values is legit and still
keeps the majority of relevant information on the popular-
ity of a song. Binning is also done by modeling the task
as a classi�cation task. Modeling it as a classical classi�-
cation task ignores the natural order of popularity values,
which in contrast means that valuable information is lost.
As a result, commonly used classi�cation models cannot
use ordering information for their predictions.

To resolve these issues, we propose to model music pop-
ularity prediction as an ordinal classi�cation task that en-
codes the order information. This allows exploiting the
natural ordering of popularity classes. We already laid out
in [11] that popularity measures are in ordinal scale. This
means that successive popularity values are not necessarily
equidistant, but they have an order. Hence, modeling the
task as an ordinal classi�cation task addresses the fact that
popularity measures are in ordinal scale. Furthermore, this
task formulation allows adjusting the number of distinct
popularity classes by binning multiple successive popular-
ity values into a single popularity class, similar to a clas-
sical classi�cation task. Combining popularity values is
enabled by the ordinal nature of those classes, without the
requirement that all classes have an equal size or distances
between each other. The extreme case would be to re-
duce the number of classes to two, resulting in the already
known hit/non-hit classi�cation. Note that in addition to
classical classi�cation, ordinal classi�cation preserves the
order of classes. Here, we propose a novel pairwise ap-
proach for learning the ordering of pairs of songs, thereby
allowing us to rank songs. In addition, we derive repre-
sentatives for the individual ordinal classes. They are used
to compare a given song with the pairwise model to de-
termine its rank. Doing so, allows inferring the popularity
based ordinal classes (cf. Section 3.5) resulting in the �nal
popularity prediction.

To summarize, the contributions of the presented work
are: (i) We model the song popularity prediction task as
an ordinal classi�cation task; (ii) We propose a novel ap-
proach for music popularity prediction based on a learned
pairwise comparator; (iii) We present an extensive evalua-
tion comparing different types of models (regression, clas-
si�cation, and pairwise) applied to multiple variations of
the ordinal classi�cation task and (iv) share the source code
of the approach and all conducted experiments 4 .

2. RELATED WORK

In the following, we give an overview of different song
popularity prediction approaches and their evaluation.

Frieler et al. [5] utilize melodic features to distinguish
successful from non-successful pop songs, resulting in a
binary classi�cation task. In [10], Dhanaraj and Logan ap-
ply classi�er models that consume acoustic and lyrics fea-
tures to predict whether a song is a hit or not, resulting in a

4 https://github.com/dbis-uibk/
hit-prediction-code/tree/smc2023

comparable binary classi�cation task. Further, Singhi and
Brown [13] use classi�er models consuming lyrics features
to predict whether a song is in the hit or non-hit class. They
consider a song a hit if it made it to the Billboard Year-End
Hot 100 singles charts. In contrast, �ops (non-hit songs)
are considered songs of the same artists that produced hits
that did not occur in the charts. In total, their dataset con-
tains 492 hits and 6,323 �ops, showing the natural imbal-
ance of the two classes. A different de�nition of hits and
non-hits is used by Ni et al. [14]. They distinguish songs
that made it to the top �ve of the UK charts (hits) from
songs that resided in the range 30-40 (non-hits). Pachet and
Roy [15] introduce the HiFind Database containing popu-
larity measures as three popularity classes (low, medium,
and high).

In contrast, both Yang et al. [2] and Yu et al. [3] use a
neural network model trained on a dataset that contains
streaming-based popularity measures from KKBOX Inc., a
Taiwanese music streaming platform. They model the task
as a regression task and predict the popularity value based
on listener- and play counts. Similarly, we applied a neural
network model to Essentia audio features [7] to predict the
highest chart position of a song in a regression setup in our
work [1]. In that work, we also compute accuracy scores
based on the regression value by transforming the regres-
sion value to a hit (range 1-100) and non-hit (any other
value) class. Moreover, in a recent work, we created the
two datasets HSP-S and HSP-L and used them to compare
various models on song popularity prediction tasks [11].
In that work, we tackle regression tasks predicting the top
position and weeks in charts. Further, we predict the listen-
ing event-based popularity measures listener count, play
count, and Yang’s hit score [2]. We use these measures
to transform the regression tasks into binary classi�cation
tasks by splitting the value range using the median. Note
that we use two distinct classes rather than a single class
for classi�cation. To evaluate the predictive performance
of the regression experiments, we use Spearman’s � and
Kendall’s � . Additionally, we report accuracy and F1 for
the classi�cation experiments. In a follow-up work, we
provide additional results for further models in [12].

In contrary to the previously presented approaches, or-
dinal classi�cation approaches utilize the relative order of
songs to learn how to rank songs based on popularity. Re-
lated previous work on ordinal classi�cation, also called
ordinal regression, was done by Ren and Kauffman [16].
They investigate the development of the popularity of a
song over time using audio features, and external features
such as the artist’s voice, or if it was produced by a major
label. Based on these features, they aim to predict the rank-
ing of a song in an ordinal classi�cation setup, where they
predict popularity for one week in advance. In contrast, we
solely use audio descriptors which do not change over time
to predict popularity measures. This results in a different
prediction setup as we predict an overall popularity mea-
sures that is not bound to a speci�c date (derived from the
full observations period covered in a dataset) while they try
to predict a popularity measure at a certain date (e.g., they
predict the popularity one week in the future).

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

347





3.3 Train the Comparator

Our approach aims to train a model that compares two
songs to derive their relative order, relying on the feature
format (concat or delta) and a target value (cf. Section 3.2).
We train a pairwise comparator model that learns to predict
the three classes f�1, 0, 1g (cf. Equation (1)), represent-
ing the relative order of the pair’s two songs. Since we
use this prediction to determine the order of two songs, it
is suf�cient to predict the correct sign or 0 as this predic-
tion is then used to determine the prediction of the ordinal
class (cf. Section 3.5). Relying on the sign allows utilizing
both classi�cation and regression models as the pairwise
comparator without modifying their output.

3.4 Representative Selection

To predict the popularity of a song using the pairwise com-
parator model, we convert the learned ranking prediction to
an ordinal class prediction. We �rst derive a representative
sample for each ordinal class during training to compare
them with songs for which we are seeking popularity pre-
dictions (cf. Section 3.5). Note that the binning of popu-
larity values in ordinal classes (cf. Section 3.1) does not
allow distinguishing the popularity of songs within an or-
dinal class. Nevertheless, it would be possible to add fur-
ther labeling to songs within a class that enables that. To
keep our results comparable with traditional classi�cation
models that cannot use such additional labeling, we de-
cided to only utilize the popularity encoded in the ordinal
classes (cf. Section 3.1). Hence, to determine a represen-
tative sample, we consider two distinct approaches. For
the �rst approach, we select a random song per class from
the training set to act as the representative sample of each
class. This random selection leads to a high variance in the
predictive performance when the experiment is repeated
multiple times. We attribute this to the fact that a purely
random selection can either (a) happen to choose a good
representative for a class, i.e., a song that is very character-
istic of the class, or (b) choose a bad representative, i.e., a
song that is effectively an outlier which is dissimilar to the
other songs in the same class. Hence, this approach is not
suitable to �nd songs that represent the ordinal class well.
These representatives are used to derive predictions; hence,
it is crucial to select a good representative. Therefore, we
propose a second approach, where we compute the aver-
age of the feature vectors of all songs in a given class in
the training set. The deterministic nature of this approach
leads to stable results in the predictive performance of the
overall approach across repeated runs of the same experi-
ment. Therefore, we will utilize this selection method of
representatives for our further experiments. Note that this
average represents the centroid of each class in terms of
features, resulting in an arti�cial feature vector.

3.5 Ordinal Class Prediction

To predict the ordinal class of a song, we propose a pro-
cedure inspired by the widely known insertion sort algo-
rithm. We utilize the ordinal class de�nition and com-
pare the song with the representatives of all classes (cf.

Section 3.4). Beginning with the representative of the least
popular class (lowest class index; depending on the popu-
larity measure this can also be the most popular class), we
successively compare the song with all further represen-
tatives in the order determined by their ordinal popularity
class. We continue this as long as the pairwise model, act-
ing as a comparator, predicts a value >= 0, meaning that
the currently compared representative is less popular (in
terms of class index) than the given song. Hence, we pre-
dict the �rst class for which the pairwise model predicts a
value of < 0 as its popularity class. This results from our
interpretation of the representatives. We account the song
that resides �between� two representatives to the latter, as
otherwise, it would not be possible to ever predict a song
for the �rst popularity class following the same procedure.

4. EXPERIMENTS

This section describes the experiments conducted to evalu-
ate the pairwise approach for popularity prediction mod-
eled as an ordinal classi�cation task. We compare our
approach to baseline models performing traditional clas-
si�cation or regression tasks to show the usefulness of the
proposed ordinal regression approach. We train the base-
line regression models on the index of a one-hot encoded
representation of the ordinal classes, and then transform
their prediction to the closest class (index in the one-hot
encoded vector). To investigate the impact of the number
of classes, we run experiments with different numbers of
classes: two classes, �ve classes (inspired by [17]), and
from there on in steps of �ve up to 100 classes. Note that
using many classes can be considered an approximation
of a regression task, while small numbers are comparable
with previous binary classi�cation tasks.

4.1 Evaluated Models

We evaluate three types of models: (1) classi�cation mod-
els, (2) regression models, and (3) our pairwise ordinal
classi�cation approach and chose baseline models based
on their results in [12].

For classi�cation, we use a variety of models to com-
pare our approach against: The logistic regression classi-
�er (Logit) of scikit-learn [18] as a representative for a lin-
ear classi�cation model, and a dense feed-forward neural
network using the multi-layer perceptron classi�er (MLPC)
of scikit-learn. Similar to the logistic regression model, we
relied on the default parameters except for the layer struc-
ture, as this would result in a single hidden layer with 100
neurons as this would result in a rather small network com-
pared to previous network-based approaches (cf. [1�3]). In
contrast to this default, we use �ve hidden layers. The �rst
hidden layer following the input layer has a size of 256,
followed by three layers with 128 neurons and a further
hidden layer containing 64 neurons. This results in a neu-
ral network with seven layers in total, including the input
and output layer. We enabled early stopping provided by
the scikit-learn with a maximum of 200 epochs.

In addition, we evaluate regression models for prediction:
a linear regression model (Linear) and a MLP regression

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

349



model (MLPR). In both cases, we utilize the scikit-learn
implementations and keep the default parameters. Again,
we change the layer con�guration of the MLP to be the
same as the classi�er model. To arrive at predictions in
the form of ordinal classes, we map the prediction of the
regression model to the closest ordinal class, effectively
converting a single value to a one-hot encoded vector.

For our pairwise approach, we use the four models intro-
duced above to learn the comparator at its core. As stated
in Section 3.5 it is possible to use the output of a regression
model as a comparator without further modi�cation.

4.2 Experimental Setup

The main goals of the experiments are to tune our pairwise
approach and to compare our proposed pairwise approach
with classical regression and classi�cation models.

Our experiments are based on the HSP-S and HSP-L data-
sets published in our previous work [11]. These datasets
mainly differ in their size, as the HSP-S dataset is balanced
in terms of hits and non-hits (hits are de�ned by a song’s
occurrence in the Billboard Hot 100). The HSP-S dataset
contains 7,736 songs while HSP-L contains 73,482 songs.
Further, they differ in the distribution of popularity mea-
sures. The different properties of both datasets (HSP-S and
HSP-L) allow showing the generalizability of the results.

As input features, we use the set of Essentia audio fea-
tures [7] already utilized by [1,11,12] to predict the ordinal
class derived from Yang’s hit score [2] (cf. Section 3.1).
These features include the low-level descriptors extracted
by Essentia describing bark bands, erb-bands, mel-bands,
and average loudness to name some of the features that de-
scribe the spectral and dynamics of a song. Further, the
input includes high-level features capturing the mood, vo-
cal, genre, and danceability derived using the classi�ers in-
cluded in Essentia 5 . Yang’s hit score is computed by mul-
tiplying the logarithm of the listener count with the log-
arithm of the play count, and has been shown to be well
suited for popularity prediction. We run experiments using
both binning strategies presented in Section 3.1 and differ-
ent numbers of classes in a 5-fold cross validation setup. In
particular, we aim to determine how quantile binning and
uniform binning impacts the performance of the different
models. This allows analyzing the effects of the distribu-
tion of the number of songs contained in each class. Fur-
ther, we aim to gather insights on how models are affected
by different numbers of ordinal classes. Note that in case
of uniform binning, our pairwise approach cannot make
predictions for large numbers of classes. This is due to
the dataset size, as splitting it to a larger number of classes
leads to empty classes, preventing the selection of a repre-
sentative for this class that is needed for the prediction (cf.
Section 3.5). This effect can be observed beginning at 45
(HSP-S) or 55 classes (HSP-L).

Inspired by ordinal classi�cation, we use a confusion ma-
trix to derive multiple classi�cation metrics. We compute
correlation scores based on this confusion matrix. Sakai

5 These features are further described in Essentia’s documentation:
https://essentia.upf.edu/streaming_extractor_
music.html.

et al. [19] evaluated different evaluation measures for ordi-
nal prediction and suggest to use Cohen’s linear weighted
kappa [20] for ordinal classi�cation. We follow this sug-
gestion and use Cohen’s linear weighted kappa as the pri-
mary evaluation metric for ordinal classi�cation tasks. Note
that the ordinal information encoded in the confusion ma-
trix by the order of classes allows computing error metrics
such as mean absolute error (MAE).

5. RESULTS AND DISCUSSION

In the following, we present the results of our experiments.
First, we share insights into how different con�gurations
of the pairwise approach perform in terms of predictive
power. Second, we present a comparison of the pairwise
approach with baseline models. It is important to note that
for Cohen’s linear weighted kappa, higher values are better
and for the MAE, lower values are better. Further, the @n
(e.g., @5 and @10) notation in Table 1 refers to the number
of ordinal classes used for the particular experiment.

5.1 Different Pairwise Approach Setups

In a �rst step, we investigate the effects of the feature en-
coding strategies for our pairwise approach on both datasets.
The results can be seen in Table 1. The experiments on the
HSP-S dataset reveal that delta encoding overall leads to
signi�cantly (paired Student’s t-test; p < :05) better re-
sults than concat encoding when comparing the individual
results of the folds of all selected comparator models for
our pairwise approach. For the HSP-L dataset, this also
holds for linear comparator models (linear and logistic re-
gression) but it does not hold true for the multi-layer per-
ceptron classi�er (MLPC) and regressor models (MLPR)
comparators. For these, concat performs signi�cantly bet-
ter than delta. We suspect that this is due to the large num-
ber of songs. This might enable the MLP comparator mod-
els to learn to compare the concatenated features of two
songs to determine their relative order. Nevertheless, linear
models overall outperformed these MLP models and our
experiments show that delta encoding is the preferred type
of encoding for linear models. Consequently, we present
detailed results utilizing this encoding (cf. Section 5.2).

Second, we investigate the impact of different compara-
tor models on our pairwise approach. Comparing all four
comparator models on the HSP-S dataset using uniform
binning shows that the linear comparator models (linear
and logistic regression) signi�cantly outperform the multi-
layer perceptron models. Table 1 shows that linear mod-
els achieve approximately twice the kappa score of the
multi-layer perceptron models. This also holds true for
MAE. The �nding that neural network-based comparators
achieve a lower kappa score compared to their linear coun-
terpart is also evident on the HSP-L dataset for uniform
binning. Similar behavior can be seen on the HSP-S dataset
with quantile binning. This indicates that for the current
pairwise model setup, linear models outperform more com-
plex models such as the utilized neural network model. We
hypothesize that only encoding the order of songs in a pair
(cf. Section 3.2) might not be descriptive enough to tune

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

350



HSP-S HSP-L
Kappa MAE Kappa MAE

Binning Model Encoding @5 @40 @5 @40 @5 @40 @5 @40

Uniform Linear - 0.212 (0.009) 0.212 (0.008) 1.027 (0.022) 8.001 (0.298)? 0.194 (0.005)? 0.158 (0.003) 1.098 (0.008)? 8.935 (0.179)
Uniform Logit - 0.207 (0.014) 0.173 (0.010) 1.052 (0.013) 8.465 (0.189) 0.156 (0.005) 0.134 (0.007) 1.173 (0.013) 9.493 (0.269)
Uniform Linear Pairwise concat 0.199 (0.007) 0.184 (0.007) 1.091 (0.021) 10.151 (0.410) 0.169 (0.004) 0.164 (0.004) 1.123 (0.017) 10.267 (0.129)
Uniform Linear Pairwise delta 0.210 (0.009) 0.202 (0.004) 1.065 (0.033) 9.688 (0.376) 0.171 (0.003) 0.164 (0.003) 1.121 (0.012) 10.291 (0.173)
Uniform Logit Pairwise concat 0.190 (0.007) 0.177 (0.008) 1.147 (0.024) 10.502 (0.394) 0.150 (0.005) 0.140 (0.002) 1.221 (0.027) 10.895 (0.346)
Uniform Logit Pairwise delta 0.203 (0.008) 0.198 (0.008) 1.087 (0.029) 9.853 (0.423) 0.169 (0.003) 0.153 (0.002) 1.163 (0.016) 10.603 (0.306)
Uniform MLPR - 0.157 (0.015) 0.155 (0.019) 1.117 (0.026) 8.546 (0.203) 0.140 (0.006) 0.160 (0.007) 1.163 (0.010) 8.720 (0.181)?

Uniform MLPC - 0.161 (0.022) 0.161 (0.015) 1.111 (0.024) 8.638 (0.125) 0.137 (0.005) 0.148 (0.002) 1.186 (0.013) 9.241 (0.279)
Uniform MLPR Pairwise concat 0.103 (0.008) 0.076 (0.014) 1.435 (0.062) 14.329 (0.968) 0.113 (0.008) 0.095 (0.020) 1.445 (0.035) 13.246 (1.173)
Uniform MLPR Pairwise delta 0.117 (0.011) 0.104 (0.011) 1.395 (0.038) 13.103 (0.420) 0.081 (0.005) 0.071 (0.002) 1.552 (0.049) 14.071 (0.510)
Uniform MLPC Pairwise concat 0.075 (0.009) 0.062 (0.006) 1.581 (0.053) 15.147 (0.351) 0.111 (0.008) 0.099 (0.011) 1.467 (0.060) 12.940 (0.818)
Uniform MLPC Pairwise delta 0.109 (0.013) 0.095 (0.008) 1.462 (0.027) 13.221 (0.558) 0.071 (0.005) 0.065 (0.004) 1.613 (0.042) 14.848 (0.652)

Quantile Linear - 0.210 (0.008) 0.211 (0.010) 1.053 (0.011)? 8.708 (0.100)? 0.153 (0.003) 0.155 (0.003) 1.088 (0.003)? 8.944 (0.032)?

Quantile Logit - 0.255 (0.009) 0.225 (0.010) 1.247 (0.016) 10.903 (0.193) 0.223 (0.006) 0.203 (0.004) 1.362 (0.015) 12.113 (0.064)
Quantile Linear Pairwise concat 0.266 (0.016) 0.247 (0.012) 1.280 (0.025) 11.726 (0.198) 0.253 (0.005) 0.230 (0.014) 1.342 (0.010) 12.471 (0.147)
Quantile Linear Pairwise delta 0.276 (0.009) 0.264 (0.013) 1.261 (0.014) 11.362 (0.270) 0.255 (0.004)? 0.236 (0.006) 1.331 (0.005) 12.397 (0.068)
Quantile Logit Pairwise concat 0.259 (0.012) 0.247 (0.016) 1.312 (0.028) 11.963 (0.344) 0.224 (0.006) 0.206 (0.003) 1.394 (0.009) 13.056 (0.052)
Quantile Logit Pairwise delta 0.276 (0.014) 0.260 (0.009) 1.272 (0.027) 11.586 (0.187) 0.241 (0.005) 0.222 (0.005) 1.360 (0.008) 12.712 (0.044)
Quantile MLPR - 0.182 (0.021) 0.180 (0.012) 1.240 (0.029) 10.397 (0.177) 0.157 (0.003) 0.166 (0.007) 1.269 (0.011) 10.116 (0.191)
Quantile MLPC - 0.190 (0.021) 0.180 (0.027) 1.292 (0.026) 11.269 (0.493) 0.155 (0.003) 0.173 (0.007) 1.361 (0.005) 11.582 (0.130)
Quantile MLPC Pairwise concat 0.126 (0.016) 0.102 (0.014) 1.624 (0.043) 15.799 (0.466) 0.190 (0.010) 0.130 (0.035) 1.515 (0.029) 15.708 (0.862)
Quantile MLPC Pairwise delta 0.151 (0.029) 0.144 (0.021) 1.572 (0.056) 14.675 (0.306) 0.104 (0.007) 0.097 (0.008) 1.681 (0.014) 16.079 (0.170)

Table 1: Summary of our results containing linear-weighted kappa scores and MAEs on both datasets and binning for
baseline models and multiple setups of our pairwise approach with standard deviation in brackets. The best results per
dataset, binning, and metric are in bold. ? means signi�cantly better (tested with a paired Student’s t-test; p < :05)

the large number of parameters for the utilized multi-layer
perceptron approach.

As a further observation, the linear regression model as a
comparator obtains signi�cantly higher kappa scores com-
pared to the logistic regression model, across both datasets
and class mappings. Similar effects can be seen when com-
paring the respective MAEs. The same effects can be ob-
served by comparing MLPR and MLPC comparator mod-
els for our pairwise model based on kappa score. We lead
this back to the comparator (cf. Section 3.3): regression
models are not strictly bound to the three values f�1, 0,
1g for prediction, while classi�cation models are bound to
these three classes. As a consequence, we only report de-
tailed results for different numbers of classes using a linear
regression comparator model in the following section.

5.2 Different Numbers of Ordinal Popularity Classes

Figure 2a shows the results for different models applied
to the HSP-S dataset using different numbers of ordinal
classes. We provide results for a multi-layer perceptron
regression model (MLPR), a linear regression (Lin), a lo-
gistic regression model (Log) and our pairwise approach
utilizing delta encoding and a linear regression model as
its comparator (Lin-Pw). Further, we include results for
both uniform (L) and quantile binning (Q). E.g., L-Lin-Pw
stands for linear binning with a linear regression compara-
tor used in the pairwise model. The pairwise model applied
to uniform binning could not be evaluated for 45 classes
and above. The reason for this is that we need to select
representatives (cf. Section 4.2) that are not available for
all ordinal classes beyond this number of classes.

For both datasets, the pairwise approach with linear re-
gression as its comparator resides among the best perform-
ing models in terms of kappa score for uniform binning.
It signi�cantly outperforms all models on both datasets,
except for the pure linear regression model on the HSP-

S dataset. Note that for uniform binning we only included
results up to 40 classes for HSP-S and up to 50 classes
for HSP-L in our signi�cance tests as we do not have re-
sults for higher numbers of classes for the pairwise ap-
proach (cf. Section 3.5). Further, we see in both Figure 2a
and Figure 2b that the linear pairwise approach signi�cantly
outperforms all other approaches on quantile binning. An
explanation for this effect could be that quantile binning
leads to the same number of songs for each class. Hence,
it is equally likely for each class’s songs to be selected for
each pair�in contrast to the uniform binning experiments
where this is dependent on the distribution of songs among
the classes. This effect is caused by the random selection
of songs during the pair creation (cf. Section 3.2), which
leads to a lower probability of being selected for samples
from a class with lower numbers of songs. Additionally,
the logistic regression model as a representative of classi-
�er models bene�ts from the balanced numbers of songs
per class resulting from quantile binning. We observe that
on both datasets it performs signi�cantly better than the
same model run on uniform binning. Further, the logis-
tic regression classi�er model performs signi�cantly better
than the linear regression model on the HSP-S as well as
the HSP-L dataset with quantile binning. Further, we ob-
serve that the opposite is true for uniform binning. For
this setup, the linear regression model signi�cantly outper-
forms the logistic regression classi�er model.

The MLP regression model reveals comparable results
as the linear regression models on the HSP-L dataset (cf.
Figure 2b), independent of the used binning. While the
MLP regression model performs worse than the linear re-
gression model on the smaller HSP-S dataset (cf. Figure 2a).
These �ndings are similar to the results we reported in our
previous work [11], where we showed that simple linear
models achieve comparable results to those achieved by
neural network models. This is similar to the observations

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

351






