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Abstract. Microblogging applications such as Twitter are experiencing
tremendous success. Microblog users utilize hashtags to categorize posted
messages which aim at bringing order to the myriads of microblog mes-
sages. However, the percentage of messages incorporating hashtags is
small and the used hashtags are very heterogeneous as hashtags may be
chosen freely and may consist of any arbitrary combination of charac-
ters. This heterogeneity and the lack of use of hashtags lead to significant
drawbacks in regards to the search functionality as messages are not cat-
egorized in a homogeneous way. In this paper we present an approach for
the recommendation of hashtags suitable for the message the user cur-
rently enters which aims at creating a more homogeneous set of hashtags.
Furthermore, we present a detailed study on how the similarity measures
used for the computation of recommendations influence the final set of
recommended hashtags.

1 Introduction

Microblogging has become immensely popular throughout the last years. Plat-
forms like Jaiku, Tumblr and Twitter are experiencing tremendous popularity on
the web. Essentially, microblogging allows users to post short messages, on the
Twitter platform these are at most 140 characters long. These posted messages—
also known as tweets—are available to the public. Users are able to “follow” other
users, which basically means that if user A follows user B (the followee), user A
subscribes to the feed of tweets of user B. Messages are then added to the user’s
timeline (a chronological overview about his own tweets and the tweets of his
followees) which enables him to always be up-to-date with his followee’s tweets.
Users may also re-broadcast tweets of other users (so-called retweets). Further-
more, users are also able to address tweets to certain users (so-called direct
messages) or to simply mention users in their tweets. Considering the fact that
currently about 340,000,000 Twitter messages are posted every day1 at a peak

1 according to http://business.twitter.com/en/basics/what-is-twitter/



level of 8,868 messages per second2, it becomes clear that searching through this
data can be a tedious task. Therefore, Twitter users themselves started to man-
ually categorize and classify their tweets—they started to use so-called hashtags
as a part of the message. The only requirement for a hashtag is that it has to be
preceded by a hash symbol #, like e.g. in the hashtags #apple, #elections or
#obama. There are no further restrictions in regards of the syntax or semantics of
hashtags, which makes them a very convenient, easy-to-use way of categorizing
tweets. Most importantly, hashtags can be used for searching messages, following
a certain thread or topic and therefore mark a set of tweets focusing on a certain
topic described by the hashtag. Hence, the use of appropriate hashtags is crucial
for the popularity of a message in regards to how quickly messages concerning a
certain topic can be found. Therefore, hashtags can also be seen as a way to give
a certain amount of “context” to a tweet. However, choosing the best hashtags
for a certain message can be a difficult task. Hence, users often feel forced to
use multiple hashtags having the same meaning (synonyms), like e.g. for tweets
regarding the Tour de France (a world-famous bicycle race in France), one could
use #tdf, #tourdefrance, #cycling or #procycling. The usage of multiple
synonymous hashtags decreases the possible length of the actual content of the
tweet as only 140 characters including hashtags are allowed per tweet. Further-
more, the usage of synonyms also motivates other users to cram their messages
with hashtags to cover as many searches as possible. To avoid such a proliferation
of hashtags, hashtags concerning a certain event are often predefined and propa-
gated to all its participants in order to ensure that the hashtags used for tweets
regarding this event are homogeneous. This often leads event organizers (e.g.
of conferences) to announce an “official” hashtag. E.g., Tim O’ Reilly (@ tim-
oreilly) posted on 2011-03-05: At Wired Disruptive by Design conference,

no hashtag announced. Hmmm.. Such scenarios could easily be avoided if the
tag vocabulary of the folksonomy is kept homogeneous which basically implies
that no synonymous hashtags are used.

In this paper we present an approach aiming at supporting the user and
creating a more homogeneous set of hashtags within the Twittersphere by fa-
cilitating a recommender system for the suggestion of suitable hashtags to the
users. We show how the computation of hashtags can be facilitated and prove
that this approach is able to provide the user with suitable hashtag recommen-
dations. Furthermore, we focus on how the similarity function used during the
computation of recommendations influences the quality of the final recommen-
dations.
The remainder of this paper is organized as follows. Section 2 outlines the char-
acteristics of the data set underlying our evaluations. Section 3 is concerned with
the proposed recommendation algorithms. Section 4 features the evaluation of
our approach and Section 5 describes related work. The paper concludes with
final remarks in Section 6.

2 according to http://yearinreview.twitter.com/de/tps.html



2 Twitter Data Set

The approach presented in this paper and its evaluation are based on an under-
lying data set of tweets which is used to compute the hashtag recommendations.
As there are no large Twitter data sets publicly available, we crawled tweets in
order to build up such a data set. The data set was crawled by using the Twitter
streaming API3. In particular, we made use of the GET statuses/sample API
function which returns a random sample of all public statuses (tweets) published.
However, the API only allows for crawling about 1% of all public statuses (for-
merly called Spritzer access). Between June 2011 and May 2012 we were able to
crawl about 386,000,000 tweets using this crawling strategy. Details about the
crawled data set can be found in Table 1.

Characteristic Number Percentage

Crawled messages total 386,917,626 100%

Messages containing one or more hashtags 49,696,615 12.84%

Messages containing no hashtags 337,221,011 87.16%

Retweets 67,995,905 17.57%

Retweets containing one or more hashtags 14,395,494 3.72%

Direct messages, mentions 212,651,505 54.96%

Table 1. Basic Data Set Characteristics

Only 12.84% of the crawled messages contained hashtags. Hence, we were
only able to use about 50,000,000 tweets out of the data set for our needs.
Table 2 contains information about the hashtagging behavior of users within the
data set. Figure 1 depicts the longtail-distribution of hashtag usages. This chart
clearly shows that only a very small fraction of hashtags are used with a high
frequency whereas the long tail of hashtags are only used very few times. As can
be seen in Table 2, the majority of hashtags occur exactly once. This is the case
for 5,765,835 hashtags which amounts to a total of 74.14%. This number indicates
that the hashtag vocabulary is highly heterogeneous and as such, restricts the
search capabilities within Twitter data in regards to hashtag-based search.

3 Hashtag Recommendations

The recommendation of hashtags supports the user during the process of creat-
ing a new message. While the user is typing, hashtags appropriate for the already
entered message are computed on the fly. With every new keystroke, the recom-
mendations are recomputed and get refined. The top-k recommendations are
shown to the user, where k denotes the size of the set of recommended hashtags.

3 https://dev.twitter.com/docs/streaming-apis



Characteristic Value

Messages containing one or more hashtags 49,696,615

Hashtags usages total 65,612,803

Average number of hashtags per message 0.16

Average number of hashtags per message 1.32

(within set of tweets containing at least one hashtag)

Maximum number of hashtags per message 47

Median of hashtags per message 1

Hashtags distinct 7,777,194

Hashtags occurring ≥ 5 times in total 757,832

Hashtags occurring < 5 times in total 7,135,627

Hashtags occurring < 3 times in total 6,841,523

Hashtags occurring once 5,765,835

Average number of usages per hashtag 8.43

Median number of usages per hashtag 1

Table 2. Overview Hashtags in Data Set

Fig. 1. Longtail Distribution of Hashtag Usages



Due to the fact that both the cognition of the user and the space available for
displaying the recommendations is limited, the size of the set of recommended
hashtags is restricted. In most cases a set of 5–10 recommendations is most ap-
propriate which also corresponds to the capacity of short-term memory [28] and
furthermore, can be perceived very quickly in a user interface. The problem of
choice overload has also been addressed by Bollen et al. [5] who state that top-5
recommendations are easy to choose from by the user. For a given message (or
part of it), the computation of these recommendations based on the underlying
data set comprises the following steps which are also illustrated in Figure 2.

1. For a given input message (or a part of it) which is entered by the user:
2. Retrieve the most similar messages featuring hashtags from the data set.
3. Extract the hashtags contained in the top-n similar messages. These hashtags

constitute the hashtag recommendation candidate set.
4. Rank the recommendation candidates computed in step 2 according to the

ranking methods proposed in this paper.
5. Present the ranked top-k hashtags to the user.

These steps are described in detail in the following sections.

Fig. 2. Workflow: Hashtag Recommendation Computation

3.1 Similarity of Messages

The similarity of the input message and the messages contained in the data set is
crucial for the further computation of recommendation candidates and also the
ranking of these candidates. Hence, we evaluated the following text similarity
functions:

– Cosine similarity on TF-IDF weighted vectors [19,25]
– Cosine similarity on BM25 Okapi weighted vectors [25,34]
– Dice coefficient [9]
– Jaccard coefficient [16]
– Levenshtein distance [22]



Cosine Similarity The cosine similarity function is one of the predominant
measures in Information Retrieval. It is based on the (weighted) term vectors
of both the query and the respective document which is to be compared to the
query. In the case of searching for the best matching message for a certain input
message, the query is defined by the input message and the cosine similarity
is computed for the input message and every single message contained in the
database. The definition of cosine similarity between vectors (i.e. the angle be-
tween these two vectors) is defined as shown in Equation 1 where vi is the vector
representing the input message (the query) and vj is vector representing the
reference message from the database.

cos(vi, vj) =
vi · vj
‖vi‖ ‖vj‖

(1)

Closely related to the cosine similarity of vectors is the weighting of terms [36]
which allows for a weighting of each single term. We chose to evaluate the cosine
similarity of weighted term vectors computed by two different weighting schemes:
TF-IDF and the BM25 Okapi weighting scheme.

The traditional term frequency-inverse document frequency (TF-IDF) weight-
ing scheme aims at estimating the relevance of a certain term in relation to
the whole document corpus (in our case the reference data set). This function
is based on two components: term frequency (TF ) and inverse document fre-
quency (IDF ). TF can be defined as the number of occurrences of the given
term ti within the current document d. The IDF component basically defines
how relevant a term is in relation to the whole set of documents, as can be seen
in Equation 2 where |D| is the total number of documents within the reference
database and n(ti) is the number of documents which contain the given term ti.

IDF (ti) = log
|D|
n(ti)

(2)

These two components are then combined to the TF-IDF weight of a given
term as can be seen in Equation 3.

TF − IDF (ti, d) = TF (ti, d) · IDF (ti) (3)

The second weighting scheme we made use of is the BM25 Okapi weighting
scheme [34] which additionally also incorporates the average length of a docu-
ment and two tuning factors. BM25 is computed based on a similar definition of
the inverse document frequency as can be seen in Equation 4, where n(ti) again
is the number of documents which contain the given term ti and |D| is the total
number of documents within the reference data set.

IDF (ti) = log
|D| − n(ti) + 0.5

n(ti) + 0.5
(4)

The BM25 Okapi weight of a given term in relation to the reference data set
can subsequently be computed as in Equation 5, where |D| is the total number of
documents in the reference data set, f(ti, d) is the number of occurrences of term



ti in the document d, |d| is the length of document d and avgLen is the average
length of all documents within the reference data set. Furthermore, two tuning
parameters are used: l1 weights the influence of the document term frequency,
whereas the factor b determines the weight length scaling. [34] propose to set l1
to 1.2 and to set b to 0.75.

BM25(ti, d) = IDF (ti) ·
f(ti, d) · (l1 + 1)

f(ti, d) + l1 · (1− b + b · |d|
avgLen )

(5)

Dice Coefficient The Dice coefficient is a set-based similarity function. It
models string similarity as the similarity of the set-interpretation of both the
query string and the actual document. The function is defined as the fraction
between the overlap of terms contained in both the query and the sum of the
lengths of the two documents. The coefficient can be computed as in Equation 6,
where ti and tj are the respective sets of words contained in the corresponding
message.

dice(ti, tj) =
|ti ∩ tj |
|ti|+ |tj |

(6)

Jaccard Similarity Coefficient The Jaccard Similarity Coefficient is also
based on the bag-of-words approach. Equation 7 shows the computation of the
coefficient, where ti and tj are the respective sets of words contained in the
corresponding documents (messages).

jaccard(ti, tj) =
|ti ∩ tj |
|ti ∪ tj |

(7)

Levenshtein Distance The Levenshtein distance [23] (also known as edit-
distance) is a lexical measure which is defined as the number of edit operations
(edit, deletion or insertion) required for a certain string ti to be turned into
another string tj . Hence, identical strings feature a Levenshtein distance of 0,
whereas e.g. the strings “tweet” and “tweak” feature an edit distance of 2 as two
characters have to be edited.

3.2 Ranking

The ranking of the hashtag recommendation candidates is a crucial part of the
hashtag recommendation process as only the top-k (with k between 5 and 10)
hashtags are shown to the user. Therefore, we propose three ranking methods for
the recommendation of hashtags. In the following, T denotes the crawled data set
containing all messages and CT is the candidate set consisting of the n messages
which are most similar to the input message tinput. The function contains(t, h)
returns 1 if the specified hashtag h is present in the specified message t and 0 if
it cannot be found in the message text.



– ScoreRank is based on the similarity values of the input message tinput
and the messages containing the hashtag recommendation candidates CT .
The similarity scores computed by the different measurements described in
Section 3.1 are directly used for the ranking of the recommendation candi-
dates. If the hashtag candidate is present in more than one similar message
in the candidate set, the highest similarity score is used for further compu-
tations.

score(h) = max({sim(tc, tinput) | tc ∈ CT ∧ h ∈ tc})
where sim ∈ {cos tfidf, cos BM25, jaccard, dice, levenshtein}

(8)

– RecCountRank is based on the popularity of hashtags within the hashtag
recommendation candidate set CT . This basically means that the more en-
tries in the result set of similar messages contain a certain hashtag, the more
suitable the hashtag might be.

score(h) =
∑
c

contains(tc, h) where tc ∈ CT (9)

– GlobalPopularityRank is based on the global popularity of hashtags within
the whole underlying data set. As only a few hashtags are used at a high
frequency, it is likely that such a popular hashtag matches the message en-
tered by the user. Therefore, ranking the overall most popular hashtags from
within the candidate set higher is also a suitable approach for the ranking
of hashtags. We consider this method as a baseline ranking.

score(h) =
∑
i

contains(ti, h) where ti ∈ T (10)

The ranking is performed based on a ranking score which is computed for
each hashtag in the candidate set. After the computation of the ranking scores,
all suitable hashtag candidates of set CH are subsequently ranked in descending
order of the score to compute the final ranking.

4 Evaluation

The evaluation was conducted based on an evaluation framework we imple-
mented in Java and was based on the data set described in Section 2. The
evaluation was performed on a 8-core machine with 32 GB of RAM on CentOS
release 5.1.
Essentially, we performed leave-one-out tests [8] on the collected tweets in order
to evaluate our approach. For our tests we only used tweets which contain less
than 6 hashtags to exclude possible spam messages. Furthermore, we did not use
any retweets for the evaluation as these would lead to hashtag recommendations
based on identical messages and would therefore distort our evaluation.

The performed leave-one-out tests are sketched in Algorithm 1 and each of
these steps was performed for 1,000 test messages.



Data: Set τ of all tweets within the data set
Result: Evaluation of Recommendation Algorithm

1 begin
2 // Initialisation

3 randomTweet, inputText := null
4 hashtagRecommendations, evaluationResults, hashtags := { }
5 numberOfCorrectRecommendations := 0

6 // Get random tweet from τ
7 randomTweet = getRandomTweet(τ)
8 hashtags = extractHashtags(randomTweet)
9 inputText = removeHashtags(randomTweet)

10 // Get recommendations (see Section 3 for details)

11 hashtagRecommendations = getRecommendations(inputText)

12 // Evaluate Recommended Hashtags

13 foreach r within hashtagRecommendations do
14 if r ∈ hashtags then
15 numberOfCorrectRecommendations++
16 end

17 end

18 evaluationResult = computeMetrics(
19 inputText,
20 hashtagRecommendations,
21 numberOfCorrectRecommendations)

22 return evaluationResult

23 end

Algorithm 1: Basic Evaluation Algorithm

As for the parameters of the BM25 Okapi weighting function, we chose to
use k = 0.75 and b = 1.2 as proposed in [34]. The ranking of the top-n most
similar tweets was performed based on the proposed similarity functions and n
was set to 500. I.e., the hashtag recommendation candidates are extracted from
the 500 most similar messages.

In order to determine the quality and suitability of the recommendations
of hashtags provided to the users, we chose to apply the traditional IR-metrics
recall and precision. As a hashtag recommendation system should be aiming at
providing the user with an optimal number of correct tags, the recall value is
the most important quality measure for our approach.

Figures 3, 4 and 5 show the recall@k (k = 1, 3, 5, 10, 15, 20) plot of the recall
values of the basic ranking methods and the different similarity functions. The
performance of the Dice and Jaccard coefficients is equal as these two similarity
measures are monotonically related. I.e., the ranking of hashtags computed based
upon these two similarity measures is always equal. Therefore, we chose to only



incorporate the Jaccard similarity coefficient in our evaluations throughout the
remainder of this chapter.

The good performance of the ScoreRank (as can bee seen in Figure 3) can
be explained by the fact that the message in which the hashtag recommendation
candidate is embedded in is directly related to the relevance of the hashtag. The
other ranking methods are based on the popularity of hashtags (either locally or
globally) which are only loosely coupled to the message it is contained in. It can
be seen that already five shown hashtags are sufficient to get a reasonable recall
value of about 22% and therefore allow to build a lightweight recommendation
interface without overwhelming the user by too many recommendations. Figure
4 shows the recall@k values for the RecCountRank ranking method. ScoreRank
performs better and hence proves that the similarity of the messages in which
the hashtag recommendation candidates are embedded in are more relevant for
the quality of recommendations as simply the number of tweets such recommen-
dation candidates stem from. As can be seen in Figure 5, GlobalPopularityRank
is not very suitable as the major ranking function, however the popularity of
hashtags can be used as a boosting score which we already showed in [44]. Fur-
thermore, if no similar tweets for an input tweet can be retrieved (hence, no
customized recommendations can be provided), the overall most popular hash-
tags can be recommended as a baseline set of recommendations. A time-sensitive
ranking aiming at resembling hashtags about trending topics would furthermore
enhance this baseline strategy.

Fig. 3. ScoreRank Recall



Fig. 4. RecCountRank Recall

From these figures we can observe that the best performing similarity mea-
sure is the cosine similarity function regardless of which weighting schema was
applied to the term vectors. This can be lead back to the weighting of terms
as this allows for a lowering of the influence of very frequently occurring terms
which presumably are not that relevant while at the same time increasing the in-
fluence of less frequently occurring terms assuming that these are more relevant.
Cosine similarity with BM25 and TF-IDF weighting using ScoreRank achieved
a recall value of 26.52% (TF-IDF) respectively 24.41% (BM25) for k = 10. The
bag-of-words based approaches Dice and Jaccard are able to reach recall values
of 6.20% for k = 10. As for the recall values of the Levenshtein distance, the
recall values of e.g. 8.72% at k = 10 can be explained by the fact that Leven-
shtein is a positional character-based distance metric and as such, two texts are
equal if all characters are equal at the same position. I.e. the tweets “armstrong
for gold” and “gold for armstrong” feature a high Levenshtein distance as the
positions of the characters inspected are also featured in the distance metric.
In contrast, these two tweets would have been assessed as equal by the bag-of-
words based approaches Dice and Jaccard. The advantage of the Levenshtein
distance is the flexibility regarding typos, alternative spellings and word forms
which cannot be handled by bag-of-words based approaches as they need full
accordance between words. Especially in microposts—due to the limitation of
the length of messages—abbreviations and other mutilation of words are used



Fig. 5. GlobalPopularityRank Recall

which is one mayor reason for the better performance of Levenshtein distance
based approach.

The ranking function performing best in regards to the precision values is
again ScoreRank as can be seen in Figure 6. For ScoreRank, the highest precision
was achieved at k = 1 by the cosine similarity measures achieving precision values
of about 17%. The low precision values for k > 2 can be lead back to the fact
that the Twitter messages in our reference data set contain 1.32 hashtags on
average per message. Assume that a tweet originally contained two hashtags.
Even when recommending five or more hashtags and the two original hashtags
were correctly recommended, the precision value naturally is very low as three
of the recommendations did not match the given hashtags. Hence, the precision
value drops significantly with k > 2. However, it is important to note that the
recommended hashtags not matching the original hashtags are not necessarily
unsuited as the original hashtags only constitute a baseline for the quality of
recommendations.

Furthermore, in [44] we discussed the hybridization of ranking functions
which can lead to improved recommendations. The results showed that the com-
bination of ScoreRank and GlobalPopularityRank performed the best. Such a
combined approach is also feasible with all described similarity measures in this
paper.



Fig. 6. ScoreRank Precision

5 Related Work

The recommendation of hashtags within the Twittersphere is closely related to
the field of microblogging, tagging in Web 2.0 applications and the field of recom-
mender systems as a whole. Tagging of online resources has become popular with
the advent of Web 2.0 paradigms. However, the task of recommending traditional
tags differs considerably from recommending hashtags. Our recommendation ap-
proach is solely based on 140 characters whereas in traditional tag recommender
systems, much more data is taken into consideration for the computation of tag
recommendations. Furthermore, tweets, hashtags and trends within the Twit-
tersphere are changing at a fast pace and are very dynamic. New hashtags may
evolve around trending topics and therefore, the recommendations have to con-
sider this dynamic nature of Twitter. Nevertheless, the described ScoreRank
based on vector based similarity measures already performs very well and com-
putes highly suitable hashtag recommendations to guide and support the users.

Sigurbjörnsson et al. [41] presented an approach for the recommendation
of tags within Flickr which was based on the co-occurrence of tags (also used
in [12,24]). Two different tags co-occur if they are both used for the same photo.
Based on this information about the co-occurrence of tags for Flickr photos, the
authors developed a prototype which is able to recommend hashtags for photos
which have been partly tagged. This recommendation is computed by finding
those tags which have been used together with the tag the user already specified
for a certain photo. These tags are subsequently ranked and recommended to



the user. It is important to note that such an approach is not feasible if a photo
has not been tagged at all. Partly based on this work, Rae et al. [32] proposed a
method for Flickr tag recommendations which is based on different contexts of
tag usage. Rae distinguishes four different context which are used for the com-
putation of recommendations: (i) the user’s previously used tags, (ii) the tags
of the user’s contacts, (iii) the tags of the users which are members of the same
groups as the user and (iv) the most popular tags within the whole community.
A similar approach has also been facilitated by Garg and Weber in [11]. Fur-
thermore, on the BibSonomy platform which basically allows its users to add
bibliographic entries the users are provided with recommendations for suitable
tags annotating these entries [24]. This approach extracts tags which might be
suitable for the entry from the title of the entry, the tags previously used for the
entry and tags previously used by the current user. Based on these resources,
the authors propose different approaches for merging these sets of tags. The
resulting set is subsequently recommended to the user. Tag recommendations
based on Moviebase data has been presented in [40]. Jäschke et al. [17] propose
a collaborative filtering approach for the recommendation of tags. The authors
therefore construct a graph based on the users, the tags and the tagged entities.
Within these graphs, the recommendations are computed and ranked based on
a PageRank-like ranking algorithm for folksonomies. Recommendations based
on the content of the entity which has to be tagged have been studied in [42].
Additionally, there have been numerous papers concerned with the analysis of
the tagging behavior and motivation of users, e.g. in [2, 26].
The social aspects within social online media, such as the Twitter platform, has
been analyzed heavily throughout the last years. These analysis were concerned
with the motivations behind tweeting, like e.g. in [18]. Boyd et al. [6] showed
how users make use of the retweet function and why users retweet at all. Hon-
eycutt and Hering examined how direct Twitter messages can be used for online
collaboration [14]. Recently, the work by Romero et al. [35] analyzed how the
exposure of Twitter users to hashtags affects their hashtagging behavior and
how the use of certain hashtags is spread within the Twittersphere. The authors
found that the adoption of hashtags is dependent on the category of the tweet.
E.g. hashtags concerned with politics or sports are adopted faster than hashtags
concerned with any other topic category. Further analysis of Twitter data and
the behavior of Twitter users can be found in [15,20,21,43].
As for the recommendation of items within Twitter or based on Twitter data,
there have been numerous approaches dealing with these matters. Hannon et
al. [13] propose a recommender system which provides users with recommen-
dations for users who might be interesting to follow. Chen et al. present an
approach aiming at recommending interesting URLs to users [7]. The work by
Phelan, McCarthy and Smyth [31] is concerned with the recommendation of
news to users.
Traditionally, recommender systems are used in e-commerce where users are pro-
vided with recommendations for interesting products, like e.g. on the Amazon
website. Recommendations are typically computed based on one of the follow-



ing two approaches: (i) a collaborative filtering approach [1, 33] which is based
on finding similar users with a similar behavior for the recommendation of e.g.
tags used by these users and (ii) a content-based approach [4, 30] which aims
at finding items having the most similar characteristics as the items which have
already been used by the user.
However, to the best of our knowledge, there is currently no other approach
aiming at the recommendation of tags in microblogging platforms and hash-
tags for a certain Twitter message. As for the similarity of messages and hence
(possibly short) texts, various approaches have been facilitated which often are
closely related to a classification task of texts. Surveys about this task and the
related similarity measures can be found in [3,39]. Besides the syntactic similar-
ity of texts, also the semantic similarity of texts has been investigated. The work
by Mihalcea et al. [27] provides a good overview and comparison about various
different approaches for computing word semantic similarity. Also, semantic sim-
ilarity has been computed based on the incorporation of external sources such
as Wikipedia, as e.g. in [10]. The authors make use of semantic concepts ex-
tracted from Wikipedia (and represented as vectors). Subsequently, the vectors
of both a query and each document in the corpus are compared and used for
the estimation of the similarity of these both documents. Furthermore, Schedl
et al. provide a thorough overview about different string similarity functions
in regards to their suitability for the automatic extraction of named entities es-
pecially music artist’s names from tweets [37] and web pages [38]. Nishida et
al. [29] model the problem of tweet classification as a data compression problem.
Their approach is based on the compressibility of a given tweet in relation to a
negative and a positive corpus. The higher the compressibility for a tweet is for
the respective corpus, the more likely it is that the tweet is similar to the given
corpus and hence can be classified into the given category.

6 Conclusion

In this paper we presented an approach aiming at the recommendation of hash-
tags to microblogging users. Such recommendations help the user to (i) use more
appropriate hashtags and therefore to homogenize the set of hashtags and (ii)
encourage the users to use hashtags as suitable hashtags recommendations are
provided. The approach is based on analyzing messages similar to the message
the user currently enters and deducing a set of hashtag recommendation candi-
dates from these microblog messages. We evaluated multiple similarity measures
and showed that vector-based similarity functions, such as cosine similarity with
TF-IDF weighted entries, are the most appropriate similarity measure for the
task of retrieving similar microposts. We furthermore presented different rank-
ing techniques for the hashtags of the recommendation candidates. In combina-
tion with a ranking function based on the previously computed similarity score,
the best results in terms of precision and recall of the recommended hashtags
were achieved. The evaluations we conducted showed that our approach is ca-
pable of providing users with suitable recommendations for hashtags reaching



recall values of about 22% when presenting only 5 recommendations. Thus, this
results are the basis to build a lightweight recommendation interface without
overwhelming the user by too many recommendations. The presented approach
was already used to implement a first prototype of such a hashtag-recommender-
system which will be released under an open source license in the future. Thus,
future work will also include user studies to evaluate the user acceptance of
such a system. Further optimizations regarding the similarity of messages, i.e.
the incorporation of semantic distance measures and the exploitation of public
knowledge bases are planned. As such, for example Wikipedia concepts could
be added in order to find more semantically similar messages. Also, the extrac-
tion of named entities might add to a better performance of recommendations
as messages could be compared in regards to overlapping named entities which
would better resemble the semantics of the message. Furthermore, the resolution
of synonymous terms (e.g. via WordNet) is also part of future work. Another
very valuable source are links to websites which are used very often in microblog
messages. By analyzing the targeted websites and their topics, further informa-
tion about the messages can be gathered. In regards to Twitter, future work
also features incorporating the social graph of Twitter users into the process
of computing recommendations for hashtags to optimize the presented hashtag
recommendations, e.g. by ranking hashtags used by followers or followees higher.
Furthermore, as users tend to re-use hashtags they already made use of, an anal-
ysis of the hashtags previously used by the user and a subsequent incorporation
of these hashtags into the recommendation process are also future tasks.
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