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Abstract
In sequential recommendation scenarios, user intent is a key driver
of consumption behavior. However, consumption intents are usu-
ally latent and hence, difficult to leverage for recommender systems.
Additionally, intents can be of repeated nature (e. g., yearly shop-
ping for christmas gifts or buying a new phone), which has not been
exploited by previous approaches. To navigate these impediments
we propose the HyperHawkes model which models user sessions
via hypergraphs and extracts user intents via soft clustering. We
use Hawkes Processes to model the temporal dynamics of intents,
namely repeated consumption patterns and long-term interests of
users. For short-term interest adaption, which is more fine-grained
than intent-level modeling, we use a multi-level attention mixture
network and fuse long-term and short-term signals. We use the
generalized expectation-maximization (EM) framework for training
the model by alternating between intent representation learning
and optimizing parameters of the long- and short-term modules.
Extensive experiments on four real-world datasets from different
domains show that HyperHawkes significantly outperforms exist-
ing state-of-the-art methods.
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Figure 1: A toy example of an e-commerce retailer scenario
with repeated user intents.

1 Introduction
Recommender systems have long become essential in filtering in-
formation effectively, for instance on video-sharing websites, e-
commerce platforms, online bookstores, and social networks. With
the abundance of online information, recommender systems have
gained increasing importance by discovering and leveraging the
underlying (latent) intents of users to cater to their preferences.
In recent years, there has been a growing trend in modeling user
sequential behaviors, which aims to capture short-term user in-
terest and longer-term sequential patterns including popularity
trends and interest drifts [42]. While traditional recommendation
methods focus on static user preference modeling [16, 45], Sequen-
tial Recommendation (SR) models dynamically characterize user
behaviors [18, 24], aiming to accurately predict users’ interests in
items based on their historical interactions and their corresponding
points in time, allowing for more accurate and timely recommen-
dations [8, 54].

The majority of previous works in SR order items by interaction
timestamps and focus on sequential patterns to predict the next
potential item. Early works adopt Markov chains to provide rec-
ommendations based on the 𝐿 previous interactions via an 𝐿-order
Markov chain [15, 46]. Also, Recurrent Neural Networks (RNN)
and Convolutional Neural Networks (CNN) have been applied to
model long- and short-term dependencies in a user interaction se-
quence [18, 67]. More recent methods rely on the self-attention
mechanism and transformer-based models for capturing complex
sequential dependencies for next-item recommendations [24, 49].
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Another line of work explicitly focuses on modeling temporal dy-
namics in item sequences based on interaction timestamps [31, 66].
The availability of temporal information also enables models to
learn about global events (e. g., Christmas) [56] and the period-
icity of items [4, 54]. Previous works in the field model the tem-
poral dynamics on an item level or rely on additional category
and knowledge-graph information to represent user intent [19, 55].
However, these approaches come with several downsides: Learning
temporal dynamics on the item level is often difficult due to data
sparsity and ignores co-occurring item consumption patterns across
all users. Also, valuable meta-information for learning user intents
is not always available and mostly ignores personal user prefer-
ences like preferred brands, price restrictions, or re-consumption
behavior.

To fill the aforementioned gaps, we propose to extract latent user
intents from the user interaction sequences and model personalized
temporal dynamics including repeat consumption on the user intent
level. Consider the example in Figure 1. During each session, User
A interacts with the system by e.g., viewing or purchasing items
with different intents, and in this example, their interest is solely
focused on the items relevant to their current intent. From the user’s
interaction history, it is apparent that the intent of consuming
phone accessories is of repeated nature and is connected to the
lifetime of a screen protector for the phone. Explicitly modeling
this behavior increases the ability to recommend suitable phone
accessories after a certain period (e. g., two months).

Repeat consumption occurs due to people’s habits. For instance,
we frequently purchase the same items, dine at the same restau-
rants, and listen to the same songs and artists often with a certain
intent [1]. To empirically analyze the intent repeat consumption in
the real world, we extract sets of frequently co-occurring item sets
via the FP-Max algorithm [13]. For each active user (a user with
at least 20 item interactions) we compute maximum frequent item
sets (appearing twice or more in the user history) with a size larger
than 1 to capture intent-level interactions. Then, we compute the
maximum support of all repeated intents per user, where a support
of 0.5 of an item set means this intent is apparent in 50% of the
user’s sessions. Figure 2 displays the distribution of intent repeat
consumption with different maximum support values for four real-
world benchmark datasets from different domains. Although there
is a large portion of users with non-repeating intents, it is clear to
see that intent repeat consumption is prevalent, and also constitutes
a significant portion of interactions in certain domains.

To bridge this gap of modeling temporal dynamics of user in-
tents we propose the Hypergraph-based Hawkes Processes (Hy-
perHawkes) model for sequential recommendation. Our approach
leverages hypergraphs and soft clustering to extract latent user
intent representations from the user interaction data. Based on
these user intent representations our temporal excitation module
learns the dynamics of user intents and item consumption behavior
based on Hawkes Processes [14], a temporal point process to model
discrete events in a continuous-time regime. We propose a novel
time decay function to represent the excitation strength between
historical intent and item behaviors and their corresponding time
intervals. To capture short-term interest changes on the item level,
we additionally compute short-term interest scores based on an
attention mixture network, which captures the influence of the last
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Figure 2: Distribution of maximal support of intents (item
sets with size >= 2) of active users per dataset. We randomly
sampled 1000 users per dataset to ensure comparability be-
tween datasets.

interacted items in the current session. These steps ensure that our
model effectively combines long-term and short-term user interest,
and models both intent- and item-level temporal dynamics. We
summarize our main technical contributions as follows:
• We propose a novel global item hypergraph construction strategy
for learning intent-based item representations and employ soft
clustering to extract latent user intents.

• We integrate Hawkes Processes (temporal point processes) to
model long-term temporal dynamics on intent level; further, we
fuse short-term interests for increased personalized recommen-
dation performance.

• We conduct extensive experiments showing that our proposed
model achieves significant performance improvements over a
large number of state-of-the-art competitors on four datasets
from different domains.1

2 Related Work
In this section, we review related work, which includes sequential
recommendation, user intent, and temporal information learning.

2.1 Sequential Recommendation
Sequential recommendation aims to recommend items to the user
by modeling their past behavior sequences and characterize their
dynamic interests [24, 39, 42, 46]. Earlier approaches in this field are
based on nearest-neighbor methods [12, 21], factorization machine-
based methods [44] and Markov Chains [15]. In recent years the
advances of deep learning also led to the deployment of many deep
sequential recommendation models including CNN-based mod-
els [50, 67], RNN-based models [18, 65] and self-attention based
models [10, 24, 49]. SASRec [24] and BERT4Rec [49] both utilize
the transformer architecture [53] to model correlations among con-
text information in SR. Recently, many works focused on using
contrastive self-supervised learning (SSL) to enhance the mutual
information between positive samples while increasing the discrim-
ination of negatives [38, 41, 51, 63, 73].
1Code: https://github.com/dbis-uibk/HyperHawkes

https://github.com/dbis-uibk/HyperHawkes
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2.2 User Intent for Recommendation
In recent times an increasing body of work studied users’ intents for
improving sequential recommendations [29, 30]. Works in session-
based recommendation learn different purchase purposes via a
mixture-channel purpose routing network [57], use a multi-intent
translation graph neural network to mine user intents [35] or em-
ploy a dual-intent network to recommend new items [22]. Work
in [71] proposes an attention mixture network based on user intents
to achieve multi-level reasoning over item transitions. Another area
of research focuses on understanding the sequential patterns in
users’ interaction behaviors over longer periods. DSSRec [36] in-
troduces a seq2seq training strategy that utilizes multiple future
interactions as supervision and incorporates an intent variable de-
rived from both the user’s past and future behavior sequences. In
ICLRec [7] user intents are represented by latent variables and
learned via clustering. The learned intents are leveraged into SR
models via contrastive SSL to maximize the agreement between the
representation of a sequence and its corresponding intent.

2.3 Temporal Information, Repeated
Consumption

Time-sensitive recommendation considers the temporal informa-
tion of item interactions as context features or models tempo-
ral decay effects of historical interactions via point processes. In
TimeSVD++ [62], timestamps are divided into bins and combined
with a collaborative-filtering framework. In tensor factorization
methods time is viewed as an extra dimension in the user-item
interaction matrix [5, 25, 64]. Other works focus on capturing
trends and user-evolving patterns via attention-based temporal
modules [8, 9, 43, 66]. Li et al. [31] extend SASRec by modeling
the user-specific time intervals in the item sequence. Recently,
TGSRec [11] designs a continuous-time bipartite graph, which cap-
tures temporal dynamics within the sequential patterns of user-
item interactions. Another line of work applies the Hawkes Process
framework [14] to model the temporal decay effects of historical
interactions [6, 74], which also increases the capability of the model
to predict repeating item interactions [4, 19, 54, 55].

Different from previous works, we not only leverage that re-
peated interactions occur at intent levels but also show that incor-
porating personal user information is crucial for learning temporal
dynamics. Additionally, our model addresses the gaps in the cur-
rent understanding of user intents, especially in terms of capturing
repeated and periodic patterns, modeling user intents through a
hypergraph and soft clustering techniques based on user session
information, which significantly enhances personalized recommen-
dation performance.

3 Preliminaries
3.1 Problem Definition and Notations
In sequential interaction scenarios, the observed user-item inter-
action data is represented by a set of tuples {(𝑢, 𝑣, 𝑡)}, indicating
that user 𝑢 ∈ U interacted with item 𝑣 ∈ V at timestamp 𝑡 . The
interactions are sorted chronologically to form a user’s interaction
sequence 𝐼𝑡𝑢 = [(𝑣1, 𝑡1), (𝑣2, 𝑡2) . . . , (𝑣𝑛, 𝑡𝑛)], where 𝑛 is the number
of interactions of user 𝑢 until timestamp 𝑡 . Based on the varying

time intervals between interactions, the sequence 𝑆𝑢 can be di-
vided into subsequences (or sessions) whenever the time interval
between two interactions exceeds a threshold 𝛿 (e. g., a day or hour).
The resulting session interaction sequence can be represented as
𝑆𝑢 = [𝑠𝑢1 , 𝑠

𝑢
2 , . . . , 𝑠

𝑢
𝑙
], where 𝑠𝑢

𝑙
represents the 𝑙-th interaction sub-

sequence of user 𝑢 containing items fromV . The objective of se-
quential recommendation is to predict the item from the item setV
that the user 𝑢 is most likely to interact with at a given timestamp
𝑡 , given their sequence 𝑆𝑢 .

3.2 Hawkes Processes for Sequential Modeling
A temporal point process is a stochastic process consisting of dis-
crete events localized in the continuous-time domain. In sequen-
tial recommendation, the times at which a user interacts with a
specific item can be represented as a series of historical events
𝐻𝑡 = [𝑡1, 𝑡2, . . . , 𝑡𝑛]. To model the time of the next event based on
previous events, a conditional intensity function 𝜆(𝑡 |𝐻𝑡 ) is intro-
duced. This function represents a stochastic model for the occur-
rence of the next event given all previous event times and thereby,
affects the characteristics of the temporal point process. In Hawkes
Processes [14], the intensity function takes the form of

𝜆(𝑡) = 𝜆𝐵𝑎𝑠𝑒 + 𝛼
∑︁
𝑡𝑖<𝑡

𝜑 (𝑡 − 𝑡𝑖 ), (1)

where 𝜆𝐵𝑎𝑠𝑒 represents the base intensity and each historical event
has a self-exciting effect on the current intensity controlled by the
triggering kernel 𝜑 which determines how each past event boosts
the event intensity over time. The parameter 𝛼 determines the
degree of excitation. In the context of sequential recommendation,
the base intensity represents the user’s basic interest in a target
item, and the self-exciting term indicates the cumulative impact of
historical interactions on the user’s interest over time.

4 Proposed Method (HyperHawkes)
As illustrated in Figure 3 our HyperHawkes model consists of sev-
eral major components, including the intent-based global item
graph, and a hypergraph-based aggregation layer to generate intent-
based item representations for the soft clustering component. The
clustered intent-based item representations serve as inputs to the
temporal module, which captures users’ long-term interests. To
model short-term interest we employ an attention-mixture network
and combine both long-term and short-term signals in the final
prediction layer. In the following, we will detail each component.

4.1 Intent-based Hypergraph Network
As user intents are latent by definition and hence are difficult to
extract, we propose to induce structural bias via hypergraph model-
ing to support the underlying soft clustering process to find useful
intent representations. Compared to a simple graph with an ad-
jacency matrix reflecting the pairwise relationship between two
nodes, hyperedges in hypergaphs can connect more than two nodes
and are therefore suitable to model user intents, since item inter-
actions on an intent level naturally comprise a set of items. We
assume that in each user session, the user interacts with the system
based on one or more intents. To build our intent-based global item
hypergraph G = (V, E) with E = {𝜀𝑖 } being the set of hyperedges,
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Figure 3: Overall architecture of HyperHawkes: In the E-step of the EM algorithm, our approach extracts latent intent
representations via soft clustering of hypergraph-based item embeddings. In the M-step, we compute long-term user preference
scores via Hawkes Processes based on the user base excitation from an attentive FISM and self-exciting effects of intents. We
fuse short-term scores from the attention-mixture network and the long-term scores to get the preference score of the user for
an item.

we apply the following procedure: First, we extract data-driven user
intents as frequently occurring item sets across all training user
sessions with a length >= 2 via the FP-Max algorithm [13], where
the minimum support is set to 𝛾 . The threshold parameter 𝛾 filters
for reliable user intents and drops noisy intents not supported by
many other user sessions [38]. For each of the extracted intents,
we connect all the corresponding items via a hyperedge 𝜀𝑖 ∈ E to
build our global hypergraph. Each hyperedge 𝜀𝑖 has a weight 𝑤𝑖
attached, indicating the frequency of the extracted intent in the
dataset.

To generate intent-based global item representations we design
a simple hypergraph aggregation layer. For the item 𝑣𝑖 ’s base em-
bedding x(0)

𝑖
, we map its corresponding identifier into a dense

embedding vector h𝑣𝑖 ∈ R𝑑 , where 𝑑 indicates the dimension. To
aggregate information from neighboring nodes we employ the fol-
lowing hypergraph convolution with symmetric normalization in
our HGCN component:

X(𝑙+1) = D−1HWB−1H⊤X(𝑙 ) , (2)

where H is the incidence matrix, W is the diagonal hyperedge
weight matrix, and D and B are the corresponding degree matrices.
Compared to the hypergraph convolution presented in [3] we do
not make use of learnable weights and a non-linear activation
function, since these components are not essential for recommender
systems [59, 61]. To combine node embeddings over multiple layers
and increase the receptive field of a node we average the node

embeddings over 𝐿 layers to get the final intent-based hypergraph
item representations:

X(𝐿) =
1

𝐿 + 1

𝐿∑︁
𝑙=0

X𝑙 . (3)

4.2 Intent Representation Learning
On the user interaction sequence level, it is easily observed that
user sessions exhibit multiple, dynamically shifting intents, where
items can also belong to more than one specific intent alone [7, 48].
Additionally, these intents are not confined solely to individual ses-
sions but are also prevalent among users with similar preferences.
Therefore, directly utilizing session representation distributions for
intent representations will result in a loss of information. To miti-
gate this, we introduce a soft clustering component to disentangle
latent intents and effectively cluster items to intents.

For our soft clustering component we adopt a soft version of the
Lloyd’s 𝑘-means algorithm [58]. Let x𝑗 represent the intent-based
hypergraph representation x(𝐿)

𝑗
of item 𝑣 𝑗 and 𝜇𝑘 represent the

center of intent cluster 𝑘 . The variable 𝑟 𝑗𝑘 denotes the probability
to which item 𝑣 𝑗 is assigned to intent cluster 𝑘 . In the standard
𝑘-means algorithm, this assignment is binary, but we relax it to
allow fractional values such that

∑
𝑘 𝑟 𝑗𝑘 = 1 for all 𝑗 . Specifically,

we define

𝑟 𝑗𝑘 =
exp(−𝛽 ∥x𝑗 − 𝜇𝑘 ∥)∑
ℓ exp(−𝛽 ∥x𝑗 − 𝜇ℓ ∥)

, (4)
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which provides a soft-min assignment of each point to the cluster
centers based on distance. We use negative cosine similarity as a
distance norm ∥ · ∥. Here, 𝛽 is an inverse-temperature hyperpa-
rameter; taking 𝛽 → ∞ recovers the standard 𝑘-means assignment.
The intent cluster centers can be optimized via an iterative process
similar to the traditional 𝑘-means updates by alternately setting

𝜇𝑘 =

∑
𝑗 𝑟 𝑗𝑘x𝑗∑
𝑗 𝑟 𝑗𝑘

∀𝑘 = 1, . . . , 𝐾 (5)

𝑟 𝑗𝑘 =
exp(−𝛽 ∥x𝑗 − 𝜇𝑘 ∥)∑
ℓ exp(−𝛽 ∥x𝑗 − 𝜇ℓ ∥)

∀𝑘 = 1, . . . , 𝐾, 𝑗 = 1, . . . , 𝑛. (6)

These iterations converge to a fixed point where 𝜇 remains un-
changed between successive updates. Thus, we have soft intent
cluster assignments for each item p𝑗 ∈ P corresponding to prob-
abilities that item 𝑣 𝑗 belongs to one of the intent clusters 𝐾 . This
distribution p𝑗 serves as the latent intent representation of item 𝑣 𝑗 .

Since the intent representations p𝑗 ∈ P are latent by definition
we face the issue that without the cluster representations, we cannot
estimate our model parameters 𝜃 and without 𝜃 we are not able
to find a result for the soft cluster assignment probabilities P. It
has been shown that a generalized Expectation-Maximization (EM)
framework can resolve this situation [7, 34]. In its basic idea, EM
starts with an initial guess of 𝜃 and estimates the expected values of
our cluster assignments P in the E-step. In the M-step we maximize
the objective w.r.t. the model parameters 𝜃 given the expected
values of P. These steps are repeated until the likelihood cannot
increase anymore. For detailed derivations of the EM framework
under the sequential recommendation scenario we refer to [7, 34].

4.3 Repeated Long-term Intent Consumption
We employ Hawkes Processes to model the temporal dynamics of
long-term interactions on intent level. As defined in Equation 1
𝜆𝐵𝑎𝑠𝑒 reflects the long-term base interest of a user in a specific item
at a given point in time 𝑡 , whereas the second part accounts for the
self-exciting effects 𝜆𝑒 and can capture repeated intent behaviors.
We detail these two components in the following.

4.3.1 User Base Preference. Users often have diverse or even con-
trastive preferences (e. g., romantic and horror movies). Hence,
using a single embedding vector to represent the long-term user
interest is a limiting factor [60]. Previous works mitigate this issue
by generating a global and non-causal representation of each user
interaction sequence. Previous works [23, 33] built the preference
representation of a user for an interacted item by a uniform aggre-
gation of the representation of the other items in the interaction
sequence. In our approach, we incorporate an attentive user repre-
sentation aggregation (AURA) to compute the basic strength of the
Hawkes Process 𝜇 which computes user representations flexibly
based on the current target item representation h𝑣 :

𝜆𝐵𝑎𝑠𝑒 (𝑢, 𝑣) = h𝑢 +
∑︁

𝑗∈𝐼𝑢\{𝑣}

exp(h⊺
𝑗
h𝑣)∑

𝑗 ′∈𝐼𝑢\{𝑣} exp(h
⊺
𝑗 ′h𝑣)

h𝑣 (7)

where h𝑢 ∈ R𝑑 defines the latent user representation and is fused
with the long-term preference of user 𝑢 for item 𝑣 which is a
weighted aggregation of the item representations in the user inter-
action sequence 𝐼𝑢 .

4.3.2 Intent Excitation Learning. The trigger kernel of the intensity
function in the Hawkes Process captures the changing excitation
over time. Our goal is to leverage the time dynamics of a user’s next
intent and how previous intents can trigger subsequent interactions.
The Hawkes Process simulates the time dynamics to predict the
probability of the next event. In our approach, we consider inter-
action events with the same underlying intent for self-excitation.
Particularly, we define intent excitation learning as follows:

𝜆𝐼𝑛𝑡𝑒𝑛𝑡 (𝑢, 𝑣, 𝑡) = 𝛼𝑘
∑︁

(𝑣′,𝑡 ′ ) ∈𝐼 𝑡𝑢

𝐼𝐾 (p𝑣, p𝑣′ )𝜑 (𝑡 − 𝑡 ′) (8)

where 𝐼𝐾 denotes the indicator function which returns 1 if item
𝑣 and 𝑣 ′ belong to the same intent cluster and are in different
user sessions, otherwise it returns 0. Since we use a soft clustering
approach to assign intent cluster probabilities to each item we use
the Kullback–Leibler divergence for finding items that correspond
to the same intent clusters:

𝐼𝐾 (p𝑣, p𝑣′ ) = p𝑣 · log
(
p𝑣
p𝑣′

)
< 𝛿, (9)

where 𝛿 is a parameter to limit the probability distribution distances
per intent cluster assignment. The cluster-related parameter 𝛼𝑘
weights the degree of excitation. The temporal kernel function 𝜑 (·)
changes with the time interval Δ𝑡 = 𝑡 − 𝑡 ′ between items of the
same intent and is defined as:

𝜑 (Δ𝑡) = (1 − 𝜋𝑘 )𝐸 (Δ𝑡 |1/𝛽𝑘 ) + 𝜋𝑘𝑁 (Δ𝑡 |𝜇𝑘 , 𝜎𝑘 ), (10)

where we leverage an exponential distribution with intent-based
parameter 𝛽𝑘 to model short-term intent repeat consumption be-
havior, which diminishes quickly over time. For long-term repeated
behavior we employ a normal distribution with mean 𝜇𝑘 and stan-
dard deviation 𝜎𝑘 which are also intent representation-based pa-
rameters. Using normal distributions to simulate the user dynamic
interest changes captures real-world scenarios like item lifecycles
and repeated item consumption behavior [19, 54]. The coefficient
𝜋𝑘 balances the two distributions. We learn the corresponding
parameters of the distributions Θ𝐼𝑛𝑡𝑒𝑛𝑡 = {𝛼𝑘 , 𝛽𝑘 , 𝜇𝑘 , 𝜎𝑘 , 𝜋𝑘 } by
a non-linear transformation of the user representation h𝑢 , item
representation h𝑣 and the intent representation p𝑣 :

Θ𝐼𝑛𝑡𝑒𝑛𝑡 = M(h𝑢 | |h𝑣 | |p𝑣), (11)

whereM(·) is implemented as a two-layer neural network and | |
denotes the vector concatenation operation. Compared to previous
approaches [19, 54] our distribution parameters are not related to
item identifiers, but to the corresponding item and intent represen-
tations. Hence, our model learns the temporal dynamics on both,
item and intent level, and is able to leverage denser input signals,
since the number of intents is usually smaller than the number
of items in a dataset. Additionally, the incorporation of the user
representation to compute the distribution parameters allows our
model to learn user-specific repetition behavior which can vary
across intents. For instance, one user buys a new phone including
accessories every year whereas another user only buys a new phone
if the old one is broken, exhibiting a longer intent cycle phase.

We introduced the base intensity 𝜆𝐵𝑎𝑠𝑒 (𝑢, 𝑣) as well as the long-
term self-excitations 𝜆𝐼𝑛𝑡𝑒𝑛𝑡 (𝑢, 𝑣, 𝑡) on intent level. Therefore, we
define our final long-term excitation for item 𝑣𝑖 :

𝜆𝑖 (𝑢, 𝑣𝑖 , 𝑡) = 𝜆𝐵𝑎𝑠𝑒 (𝑢, 𝑣𝑖 ) + 𝜆𝐼𝑛𝑡𝑒𝑛𝑡 (𝑢, 𝑣𝑖 , 𝑡) (12)
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4.4 Attention Mixtures for Short-term User
Interest

The aforementioned components model the users’ long-term inter-
est and repeated consumption behavior based on intents. However,
a user intent might be exploratory, or the interest may change
dynamically during the session. To capture these short-term user
interest dynamics, we employ an attention mixture mechanism,
following previous works in session-based and sequential recom-
mendation [52, 71]. Following [71] we generate multi-level intent
queries on the groups of last items in a user interaction sequence
with length 𝑛 by employing the deep sets operation [68] and apply-
ing linear transformations per level𝑚 ∈ 𝑀 :

Q𝑀 = W𝑀

( ∑︁
{h𝑣𝑖 }𝑖=𝑛,...,𝑛−𝑀+1

)
. (13)

These generated queries are then used to compute multi-head
attention weights as:

𝛼ℎ = softmax
(QW𝑄 (KW𝐾 )⊺√

𝑑

)
, (14)

where Q ∈ R𝑙×𝑑 is the query matrix, K ∈ R𝑛×𝑑 represents the
hidden representation of each item in the sequence andW𝑄 ,W𝐾 ∈
R𝑑×𝑑 are trainable parameters. We apply 𝐿𝑝 -pooling [20] to pool
the attention map and multiply the hidden representation of the
items in the sequence with the corresponding pooled attention
weights to get the final short-term sequence representation s𝑢 .

4.5 Prediction and Model Optimization
For the next-item prediction task we need to combine long-term
and short-term interests of users. We use the short-term sequence
representation s𝑢 to compute the short-term interest score 𝑦𝑖 =

s⊺𝑢 h𝑣𝑖 , for item 𝑣𝑖 . Then, we add the long-term excitation score 𝜆𝑖
and the short-term interest score𝑦𝑖 to get the final preference score:

𝑦𝑖 = 𝜆𝑖 + 𝑦𝑖 . (15)

To learn the parameters of our recommendation model in the
M-step of the EM algorithm we adopt the pairwise ranking (BPR)
loss for optimization as follows:

L𝐵𝑃𝑅 = −
∑︁
𝑢∈U

𝑁𝑢∑︁
𝑖=1

log 𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ), (16)

where 𝜎 denotes the sigmoid function and 𝑦𝑢 𝑗 reflects the prefer-
ence score of user 𝑢 to a randomly sampled negative item 𝑗 ∉ 𝐼𝑡𝑢 .

5 Experiments and Results
In this section, we provide the setup and results of extensive exper-
iments to evaluate our proposed model, where we compare Hyper-
Hawkes to various state-of-the-art models in SR. Given our overall
goal of investigating the impact of intent repeat-consumption and
fusing short- and long-term interests of users, we aim to answer
the following research questions:
• RQ1: How does our proposed HyperHawkes compare to other

state-of-the-art SR methods on different datasets?
• RQ2: How do different components in HyperHawkes contribute

to the performance?
• RQ3: How sensitive is HyperHawkes to different hyperparameter

settings (e. g., 𝐿, 𝐾 )?

5.1 Experimental Setup
5.1.1 Datasets and Preprocessing. We conduct experiments on four
representative datasets from the e-commerce, food delivery, and
music domains [17, 27]. The Ta-Feng2 dataset contains Chinese
grocery store transaction data from 2001. SMM3 chronicles five
months of user behavior from a large online store [47]. For this
industrial-scale dataset, we sample 20,000 random users to maintain
consistency with the other datasets. The DHRD (Delivery Hero
Recommendation Dataset)4 [2] comprises food delivery orders from
three distinct cities, encompassing different vendors and dishes; we
use the data related to the city of Stockholm. Lastly, the NowPlaying
dataset includes music listening behavior of users based on Twitter
data [70]. It is worth noting, that we do not provide evaluation
for the widely used Amazon review datasets [37], the MovieLens
datasets5, or the Yelp review datasets6, since those datasets are
rating/review-based and therefore do not include repeated item
consumptions, making them unsuitable for the scenario of repeated
intent modeling [17, 27].

Table 1: Dataset statistics (after preprocessing): Number of
users, items, interactions, avg. sequence length and sparsity.

Dataset Ta-Feng SMM DHRD NowPlaying

|U| 26,162 12,098 42,774 11,310
|V| 15,642 22,167 20,883 15,905
# Interactions 0.78m 0.87m 0.52m 1.12m
Avg. length 29.99 71.97 12.30 86.39
Sparsity 99.80% 99.67% 99.94% 99.45%

We follow the preprocessing steps as in [7, 19] for the four
datasets: We keep the 5-core datasets, where users and items with
less than 5 interactions are filtered out. Table 1 provides an overview
of the datasets after preprocessing. To split the datasets, we follow
common practice in sequential recommendation and use interac-
tions with the second latest time for validation and interactions
with the latest timestamp for testing.

Following [17, 28, 69], we use thewhole item set without negative
sampling to rank the predictions. We adopt HR@{5,20} (Hit Ratio)
and NDCG@{5,20} (Normalized Discounted Cumulative Gain) as
evaluation metrics.

5.1.2 Baseline Methods. We compare HyperHawkes with the fol-
lowing representative baseline and state-of-the-art methods for
sequential recommendation:

Static models: BPR-MF [45] is a non-sequential model and char-
acterizes the pairwise interactions via matrix factorization.

Standard sequential & Transformer models: We include GRU4-
Rec [18], an RNN-based method and SASRec [24] as transformer-
based baseline method for SR.

Temporal & intent-based models: SLRC [54] is a widely used
model and one of the first to model item repeat consumption. It com-
bines matrix factorization with a temporal point process, effectively
2https://www.kaggle.com/retailrocket/ecommerce-dataset
3https://disk.yandex.ru/d/fSEBIQYZusAAuw/datasets/data_smm
4https://github.com/deliveryhero/dh-reco-dataset
5https://grouplens.org/datasets/movielens
6https://www.yelp.com/dataset

https://www.kaggle.com/retailrocket/ecommerce-dataset
https://disk.yandex.ru/d/fSEBIQYZusAAuw/datasets/data_smm
https://github.com/deliveryhero/dh-reco-dataset
https://grouplens.org/datasets/movielens
https://www.yelp.com/dataset
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Table 2: Model performance on all four datasets (± standard deviation for HyperHawkes). All improvements of HyperHawkes
over the second best model are significant (paired t-test, 𝑝 < .05), best results are in boldface, second-best results are underlined.

Dataset Metric BPR-MF GRU4Rec SASRec SLRC RepeatNet HIDE ICLRec Atten-Mixer ICSRec HyperHawkes Improv.

Ta-Feng

HR@5 0.0699 0.0657 0.0812 0.0714 0.0432 0.0616 0.0746 0.0878 0.0784 0.1108±0.0015 26.19%
HR@20 0.0943 0.1215 0.1629 0.1284 0.1006 0.0853 0.1415 0.1645 0.1566 0.1984±0.0030 20.60%
NDCG@5 0.0541 0.0459 0.0528 0.0488 0.0307 0.0419 0.0527 0.0605 0.0519 0.0765±0.0014 26.44%
NDCG@20 0.0610 0.0616 0.0761 0.0650 0.0469 0.0485 0.0716 0.0823 0.0742 0.1015±0.0015 23.32%

SMM

HR@5 0.0542 0.0586 0.0876 0.1170 0.1291 0.0391 0.0526 0.0817 0.0686 0.1483±0.0019 14.87%
HR@20 0.1056 0.1323 0.1687 0.1853 0.1968 0.0781 0.1101 0.1638 0.1505 0.2444±0.0009 24.19%
NDCG@5 0.0373 0.0393 0.0606 0.0840 0.0972 0.0272 0.0357 0.0561 0.0427 0.1018±0.0002 4.73%
NDCG@20 0.0516 0.0602 0.0836 0.1037 0.1175 0.0383 0.0520 0.0793 0.0656 0.1294±0.0004 10.13%

DHRD

HR@5 0.2156 0.1439 0.2065 0.2775 0.2702 0.1878 0.2554 0.2211 0.2129 0.2982±0.0055 7.45%
HR@20 0.3805 0.3214 0.4651 0.4158 0.3211 0.2625 0.4544 0.4295 0.4715 0.4830±0.0019 2.43%
NDCG@5 0.1488 0.0946 0.1303 0.2031 0.1983 0.1356 0.1740 0.1489 0.1323 0.2089±0.0031 2.85%
NDCG@20 0.1963 0.1450 0.2039 0.2430 0.2142 0.1572 0.2312 0.2084 0.2145 0.2621±0.0069 7.86%

NowPlaying

HR@5 0.1272 0.0992 0.1229 0.1756 0.1765 0.1079 0.1654 0.1475 0.1375 0.1842±0.0011 4.36%
HR@20 0.2730 0.2327 0.2715 0.3117 0.2996 0.1984 0.3135 0.3011 0.2931 0.3526±0.0006 12.47%
NDCG@5 0.0879 0.0650 0.0802 0.1197 0.1217 0.0787 0.1156 0.1028 0.0929 0.1242±0.0007 2.05%
NDCG@20 0.1289 0.1025 0.1221 0.1589 0.1581 0.1042 0.1574 0.1462 0.1368 0.1713±0.0008 8.43%

capturing short-term and product lifetime effects. RepeatNet [43]
proposes a novel repeat-explore mechanism to balance repeated
and new item consumption. For intent-based methods, we include
HIDE [32] which models intents via session hypergraphs. Other
state-of-the-art approaches include ICLRec [7] and ICSRec [40],
where user intents are learned via clustering and Atten-Mixer [71],
where intents are modelled via a multi-level network.

5.1.3 Implementation Details. We rely on the RecBole framework [72]
to implement our approach, using the provided baseline models or
re-implementing as needed. For all models, the embedding size is
set to 64 and the batch size to 512. We do not limit the number of
training epochs, but adopt an early-stopping strategy, which stops
training after five consecutive rounds of performance decrease on
the validation set. Each baseline model is optimized according to
its corresponding hyperparameters.

For the optimization of HyperHawkes, we use Adam [26] with
a learning rate of 0.001. The number of layers 𝐿 in the HGCN
component and number of intent clusters 𝐾 are searched in the
ranges of {1, 2, 3, 4, 5} and {2, 4, . . . , 128} respectively. For the at-
tention mixture network, we search the number of heads in the
range of {1, 2, 4, 8} and the number of levels𝑀 in {1, 2, . . . , 10}. The
threshold parameters 𝛾 and 𝛿 are set to 5e−4 and 1e−12. Our imple-
mentation is based on PyTorch 1.13.1 and Python 3.8.16, and runs on
a workstation with an AMD Ryzen 2950X, a GeForce RTX 2070, and
256 GB main memory. We publish the code and the pre-processed
datasets on GitHub: https://github.com/dbis-uibk/HyperHawkes.

5.2 Performance Comparison (RQ1)
In Table 2 we compare the performance of HyperHawkes and
the baselines. Interestingly, BPR-MF performs competitively with
GRU4Rec and SASRec, contrasting the general assumption that
sequential models generally outperform non-sequential methods.
This displays the importance of learning temporal dynamics of
repeated user behavior and the incorporation of user intent.

Advanced time-sensitive sequential models often incorporate
additional temporal signals to augment recommendation perfor-
mance. For instance, TiSASRec integrates both the item positions
and time intervals in a sequence, yielding superior performance
than its transformer-based counterpart SASRec. We further observe
that leveraging contrastive SSL in transformer-based architectures
can improve performance, as exhibited by ICLRec which optimizes
sequence representations via contrastive SSL at the user intent level.
Also, the other intent-based method Atten-Mixer shows significant
performance gains over standard sequential models. Among the
baseline methods, SLRC and RepeatNet exhibit improved perfor-
mance even over more sophisticated temporal and intent-based
models, underpinning their robustness in recommendation tasks
and their ability to model item repeat consumption.

HyperHawkes triumphs over all othermethods across all datasets,
marking a significant advancement. The average improvements
compared with the best baseline per dataset range from 2.43% to
24.19% in HR@20 and from 7.86% to 23.32% in NDCG@20. We at-
tribute this increase in performance to the ability of our approach to
effectively model long-term intent repeat behavior and short-term
user interest, which we show in detail in our ablation study.

In terms of efficiency and model complexity, we report the train-
ing time per epoch on the Ta-Feng dataset as a practical proxy for
model complexity. Intent-based models like HIDE, ICLRec, Atten-
Mixer and ICSRec require 2231.63, 254.21, 13.10 and 174.17 sec-
onds/epoch, respectively. SLRC and RepeatNet, focusing on repeat
consumption, need 13.31s and 29.64s. HyperHawkes takes 27.75s
per epoch on training and therefore, is more efficient than most
of the other sequential models, while substantially outperforming
these models in recommendation performance. A similar trend in
model complexity is also seen for the other datasets.

5.3 Ablation Study (RQ2)
HyperHawkes contains several components: a hypergraph-based
graph convolutional network (HGCN), soft clustering (SC), user

https://github.com/dbis-uibk/HyperHawkes
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Table 3: Ablation study of HyperHawkes. The symbol ↓ indi-
cates a performance drop of more than 10%, ND=NDCG.

Model Ta-Feng NowPlaying
HR@20 ND@20 HR@20 ND@20

(A) w/o LT-SINE 0.1632↓ 0.0842↓ 0.3331 0.1637
(B) w/o LT-UE 0.1818 0.0911↓ 0.3241 0.1570
(C) w/o HGCN 0.1901 0.0969 0.3145↓ 0.1544↓
(D) w/o SC 0.1732↓ 0.0867↓ 0.3377 0.1666
(E) only ST-ATM 0.1668↓ 0.0841↓ 0.2954↓ 0.1451↓
(F) w/o ST-ATM 0.0914↓ 0.0558↓ 0.3314 0.1625

HyperHawkes 0.1984 0.1015 0.3526 0.1713

base interest (LT-UE), intent excitation learning (LT-SINE), and
a short-term attention mixture network (ST-ATM). To verify the
effectiveness of each component, we conduct an ablation study on
two datasets and show the results in Table 3. The Ta-Feng and Now-
Playing datasets were chosen due to their different domains and
characteristics in terms of repeat consumption (e. g., e-commerce
vs. music streaming). From (A) and (B) we can see the impact of
different components in the Hawkes Process for modeling tempo-
ral dynamics. Eliminating the intent excitation learning (A) or the
user base preference (B), notably diminishes the performance to
a similar extent. This shows the importance of extracting latent
intents and modeling repeat behavior on the intent level compared
to the item level only. We also investigate the effect of our proposed
hypergraph-based network in (C), where removing the component
also leads to a significant performance drop. This backs our as-
sumption that inducing structural bias through the HGCN supports
the soft clustering process and leads to more representative clus-
ter/intent representations. Similar effects can be observed when
dropping the soft clustering component in (D) and using a standard
𝑘-means instead, which showcases the benefit of disentangling
user intents via soft probability distributions. Lastly, we explore the
effects of the short-term attention mixture network. Relying only
on the short-term component without any long-term effects (E)
results in a noticeable performance drop. Dropping the short-term
component (F) shows a substantial decline compared to the full
model, reflecting the critical role of short-term user behavior un-
derstanding. The incorporation of both short-term and long-term
effects leads to the best overall performance. The ablation study
results for the other two datasets SMM and DHRD are consistent
with these findings, but are not reported due to space constraints.

5.4 Impact of Hyper-Parameters (RQ3)
In this section, we investigate the impact of different hyper-parameters.
We focus on the number of layers 𝐿 in the HGCN and the number
of intent clusters 𝐾 , since these hyper-parameters are related to the
intent excitation learning, which has shown to have the highest
impact on the performance of the final model (see Section 5.3). Fig-
ure 4a shows the performance of our model with different settings
of layers 𝐿 on the Ta-Feng and NowPlaying datasets. A higher num-
ber of layers in the hypergraph-based network does not necessarily
lead to an increase in performance due to oversmoothing, where
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Figure 4: Impact of hyper-parameters in HyperHawkes.

node representations converge to the same values. We can find a
sweet spot layer setting 𝐿 of 3 (Ta-Feng) and 2 (NowPlaying).

Our main contribution lies in the temporal modeling of user
intents, extracted by soft clustering. This requires pre-defining the
number of clusters 𝐾 before training. Due to dataset heterogeneity,
𝐾 needs to be tuned to each dataset’s characteristics. Figure 4b
shows the performance differences with different cluster counts.
The optimal setting differs by dataset, with Ta-Feng performing
best at 16 clusters and NowPlaying at 32 clusters.

6 Conclusion
We proposed HyperHawkes, a novel Hypergraph-based Hawkes
Process model to comprehensively model temporal dynamics of
user intents for generating personalized sequential recommen-
dations. We extract intent representations via soft clustering of
hypergraph-based item representations. Our model learns the long-
term excitation of intents and items via Hawkes Processes and
models short-term interests of users via a custom attention mixture
component. The fused user preference scores from the long-term
and short-term components enable temporal and personalized rec-
ommendations. Cluster discovery and learning temporal dynamics
are alternately optimized under a generalized EM framework. Our
extensive experimental results on four datasets demonstrate the
effectiveness of HyperHawkes, outperforming all other state-of-
the-art methods. The ablation study showed that modeling repeat
consumption is more important than focusing on short-term inter-
est shifts of users.
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