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Abstract
Explainability in recommender systems (RS) remains a pivotal yet
challenging research frontier. Among state-of-the-art techniques,
counterfactual explanations stand out for their effectiveness, as they
show how small changes to input data can alter recommendations,
providing actionable insights that build user trust and enhance
transparency. Despite their growing prominence, the evaluation of
counterfactual explanations in RS is far from standardized. Specifi-
cally, existing metrics show inconsistency since they are affected
by variations in the performance of the underlying recommenders.
Hence, we critically examine the evaluation of counterfactual ex-
plainers through consistency as the key principle of effective evalu-
ation. Through extensive experiments, we assess how going beyond
top-1 recommendation and incorporating top-𝑘 recommendations
impacts the consistency of existing evaluation metrics. Our findings
reveal factors that impact the consistency of existing evaluation
metrics and offer a step toward effectively mitigating the inconsis-
tency problem in counterfactual explanation evaluation.
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1 Introduction
As the demand for transparency and interpretability in AI con-
tinues to grow [2, 10], eXplainable Artificial Intelligence (XAI)
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has emerged as a critical research domain. Within XAI, counter-
factual explanations (CE) [7] have become powerful tools for ad-
vancing model interpretability. By illustrating how small, targeted
changes to the input can lead to different model outputs, CEs pro-
vide intuitive, user-friendly insights into model behavior, fostering
trust and understanding among end-users [17]. While much of
the foundational work on CEs has focused on tabular or image
data [15, 24, 36], there is an increasing shift toward adapting these
methods to RS [9, 27, 30, 37, 38].

Despite growing interest, the evaluation of CEs in RS remains
underexplored [6], lacking established standard evaluation setups
and protocols, which has led to significant inconsistencies across
current evaluation practices [22]. The typical approach involves
training a recommender model (e.g., MF) on a dataset (e.g., ML-1M),
followed by a CE method that generates counterfactual instances
to alter the model’s recommendations. However, as shown in a
recent study [22], since counterfactual explainers aim to modify
the input to change the model’s output, the quality and behavior of
the recommender itself, inevitably affect the resulting explanations.
This dependency can be illustrated with a simple thought experi-
ment. Suppose the recommender is entirely untrained and behaves
randomly; in such a case, even arbitrary changes to the input would
likely produce different outputs, misleadingly suggesting that the
explainer is highly effective.While this dependencymight be accept-
able if the relative performance of different CE methods remained
consistent—i.e., if method A consistently outperformed method B
regardless of recommender quality. However, [22] demonstrated
that the relative ranking of CE methods varies with the quality of
the recommender, meaning that method Amay not consistently out-
perform method B across different recommender qualities. Instead,
the relative rankings of explanation methods vary depending on the
recommender’s performance level. This leads to inconsistencies in
the evaluation of CE methods. Consistency in this context refers to
an evaluation metric’s ability to produce stable ranking across CE
methods, despite changes in the performance of the recommender
model. For example, if explainer method 𝐸1 outperforms method
𝐸2 in explaining a recommender 𝑅1, then after minor changes in
performance of RS, while the absolute performance of CEs may
shift, 𝐸1 should still outperform 𝐸2 in relative terms. Although [22]
has highlighted these inconsistencies in evaluation practices, the
underlying causes have not been addressed.
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In this paper, we hypothesize that extending evaluation to in-
clude lower-ranked recommendations—such as the top-3—can en-
hance the consistency of CE assessments. We critically examine
standard evaluation protocols, highlighting a key limitation: the
prevalent focus on changes in the top-1 recommendation. This
practice, likely inherited from vision and graph neural network
(GNN) research [14, 32], overlooks key characteristics unique to
recommender systems—most notably—their inherently ranked out-
puts. Recent work has shown that relying solely on the top-1 item
can amplify prediction volatility and randomness [19], especially
in settings with lower model performance. To address this, we in-
vestigate how expanding evaluations to consider the top-𝑘 items
(1 ≤ 𝑘 ≤ 5) affects metric consistency.

We conduct extensive experiments across two recommender
models, six state-of-the-art CE methods, and three widely used
datasets. Our results demonstrate that top-𝑘-based evaluation yields
consistent and representative assessments, better aligning with
the ranked nature of recommender outputs and real-world usage
scenarios.

2 Related Work
The field of interpretable machine learning has witnessed substan-
tial progress [9, 11, 27, 34]. Early research predominantly empha-
sized enhancing the interpretability of the models themselves [25,
26]. In parallel, the concept of “explainability” gained prominence,
referring to approaches that treat the model as a black box and
aim to elucidate their behavior retrospectively through post-hoc
explanations [16, 35]. Counterfactual explanations have emerged
as a popular approach to post-hoc explainability in RS, offering ac-
tionable insights by modifying user inputs to change model predic-
tions [4, 14, 20, 21, 32]. Recent methods range from similarity-based
heuristics [26] to model-agnostic frameworks like ACCENT [34]
and LXR [5]. However, evaluation practices for CEs remain frag-
mented. Prior studies typically assess CE quality based on whether
they can flip the top-1 recommendation [5, 29, 33, 38], often ignor-
ing the ranked nature of recommender outputs. Furthermore, recent
work [22] shows that CE evaluation can be inconsistent—changing
the recommender’s performance may alter the perceived ranking
of explainers. In contrast, our work introduces a list-wise evalu-
ation metric that improves consistency by considering multiple
top-ranked items. This fills a critical gap in how CE methods are
compared, moving toward more reliable and reproducible bench-
marks for explainability in RS.

3 Methodology
To investigate the impact of extending the evaluation from top-1
items to top-𝑘 items, we propose the following approach.

3.1 Problem Setup and Preliminaries
Let U denote the set of users and I the set of items. Each user
𝑢 ∈ U is represented by a binary interaction vector x𝑢 ∈ {0, 1} | I | ,
where x𝑢 [𝑖] = 1 indicates that user 𝑢 has interacted with item
𝑖 . A recommender model 𝑓𝜃 maps this input to a predicted score
vector, with 𝑓𝜃 (x𝑢 ) [𝑖] representing the predicted relevance of item
𝑖 . The RS generates a ranked list of recommendations for each user.
We denote the top-𝑘 recommended items as R𝑘𝑢 = {𝑖∗1, 𝑖

∗
2, . . . , 𝑖

∗
𝑘
},

Algorithm 1: Consistent Evaluation of CE Methods
Input: Explainer 𝑒 , recommender 𝑓𝜃 , test usersU, rank

threshold 𝑇 ∈ {5, 10, 20}, top-𝑘 recommendations 𝑡𝑘
Output: Evaluation score POS-P@T
Load recommender parameters 𝑓 (𝑐 )

𝜃
;

foreach rank threshold 𝑇 ∈ {5, 10, 20} do
Initialize accumulators: POS_total← 0 ;
foreach user 𝑢 ∈ U do

x𝑢 ← user’s interaction vector ;
R𝑘𝑢 ← top-𝑘 recommendations from 𝑓

(𝑐 )
𝜃
(x𝑢 ) ;

foreach 𝑡𝑘 ∈ R𝑘𝑢 do
𝑖∗
𝑡𝑘
← 𝑡𝑘-th item in R𝑘𝑢 ;

𝐶𝐸 ← 𝑒 (x𝑢 , 𝑖∗𝑡𝑘 )
Generate positive sequence {x(1)𝑢 , . . . } by
removing most relevant items from 𝐶𝐸 ;
rankpos ← rank(𝑖∗; x(𝑡 )𝑢 ) ;
POS_total += ⊮[rankpos > 𝑘] ;

end
end

POS-P@T(𝑘 ) ← POS_total/(|U| · 𝑘)
end
return All POS-P@T(𝑘 )

where 𝑖∗
𝑗
is the 𝑗-th item in the ranked recommendation list. These

are the items for which we seek to evaluate CEs.
Given a counterfactual explainer 𝑒 , we obtain a relevance ranking

over user history items with respect to each item 𝑖∗
𝑗
in R𝑘𝑢 . Based

on this relevance, we iteratively perturb the user input vector x𝑢 by
removing one item at a time, yielding a sequence x(𝑡 )𝑢 of perturbed
inputs. Following the literature [5, 22], We compute the following
metrics:

Positive Perturbation (POS-P@T). This metric quantifies how
quickly the top-𝑘 recommended items fall below the rank threshold
𝑇 during perturbation. For user 𝑢, the POS-P@T score is:

POS-P@T𝑢 =

𝑘∑︁
𝑗=1

|x𝑢 |∑︁
𝑡=1
⊮
[
rank(𝑖∗𝑗 ; x

(𝑡 )
𝑢 ) > 𝑇

]
(1)

where rank(𝑖∗
𝑗
; x(𝑡 )𝑢 ) is the rank of 𝑖∗

𝑗
in the output of 𝑓𝜃 given

the perturbed input x(𝑡 )𝑢 and the indicator function ⊮[·] checks
whether the item still appears within the rankd threshold 𝑇 . The
key difference between this formulation and the literature [5, 22]
lies in computing the inner value over the top-𝑘 items (

∑𝑘
𝑗=1 ) rather

than only the top-1 item.
The final POS-P@T score is the average over all users:

POS-P@T =
1
|U|

∑︁
𝑢∈U

POS-P@T𝑢 (2)

We have detailed the computation process of this metric in Al-
gorithm 1.
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Figure 1: Comparison of CE methods based on POS@5 ↓ (lower value is the better) across four performance levels of the
VAE recommender on the ML-1M dataset. The figure shows the impact of going beyond top-1 (a) and considering top-𝑘 (b-d)
recommendations on improving consistency when evaluating CE models. To facilitate clearer comparisons, the values are
normalized using Min-max normalization, and shading is used to represent the variance in the results.

Negative Perturbation (NEG-P@T). Analogous to the positive per-
turbation setting, we define the NEG-P@K metric to evaluate the
robustness of the top-𝑚 recommended items under negative per-
turbations. Here, instead of removing the most important items, we
iteratively remove the least important items from the user’s inter-
action vector x𝑢 , again based on the importance ranking returned
by the counterfactual explainer 𝑒 . This metric evaluates how well
each top-𝑘 items (1 ≤ 𝑘 ≤ 5) maintain their position within the 𝑇
rank threshold under negative perturbation, where less relevant
items are removed:

NEG-P@T𝑢 =

𝑘∑︁
𝑗=1

|x𝑢 |∑︁
𝑡=1
⊮
[
rank(𝑖∗𝑗 ; x

(𝑡 )
𝑢 ) ≤ 𝑇

]
(3)

where x(𝑡 )𝑢 now represents the user interaction vector after re-
moving the 𝑡-th least important item, and rank(𝑖∗

𝑗
; x(𝑡 )𝑢 ) is the re-

sulting rank of the explained item and the overall NEG-P@T score
is:

NEG-P@T =
1
|U|

∑︁
𝑢∈U

NEG-P@T𝑢 (4)

3.2 Evaluation Setup
We use the MovieLens 1M (ML-1M) [12], Yahoo! Music [8] and
Pinterest [13] datasets following the literature [5, 22], focusing on
collaborative filtering models based on implicit user-item inter-
actions. To simulate implicit ratings in ML-1M, following [5], we
retained only ratings of 3.5 or higher and included users and items
with at least two ratings. This resulted in 575,128 ratings from 6,037
users across 3,381 items. For the Yahoo! Music dataset, we retained
ratings of 70 or higher, and following [5] we took a random sam-
ple of 486,744 ratings from 19,155 users for 9,362 items from the
Pinterest dataset.

For each user, we generate a ranked list of recommendations and
evaluate the explanation of the top-𝑘 recommendations. For each 𝑘
value, we use four levels of recommender performance by training

the recommender based on Hit Rate and saving model checkpoints
after 25%, 50%, 75%, and full training, to simulate recommenda-
tions of various quality levels. We evaluate 24 configurations (3
dataset x 2 Recommenders x 4 performance levels), repeat our ex-
periments three times, and report the average performance. We
share our dataset processing scripts, the source code, and the hyper-
parameters1.

3.3 Evaluated Methods
Our evaluation includes a range of CE methods, from established
baselines to recent advancements. Specifically, we tested two similarity-
based approaches, two traditional explainers, and two state-of-the-
art methods:

Jaccard [3]/Cosine [31] Similarity generate explanations by com-
paring an item to those in the user’s history using Jaccard [3] or
Cosine [31] similarity metrics based on co-interacted users.

LIME-RS [23] is a modified version of the LIME framework de-
signed specifically for recommender systems. It produces explana-
tions by approximating the complex recommendation model with
a locally interpretable linear model, capturing relationships within
a neighborhood around the user’s data. We applied LIME-RS to
the user’s historical interactions, carefully adjusting the number of
samples based on performance on the validation set.

SHAP (SHapley Additive exPlanations) [38] quantifies the influ-
ence of individual features on a model’s predictions. By leveraging
game theory, it assigns a value to each feature according to its
contribution to the final output. SHAP, though effective, is com-
putationally intensive due to the exponential number of possible
perturbations in a user’s history.

ACCENT (Action-based Counterfactual Explanations for Neural
Recommenders for Tangibility) [34] is a CE framework that extends
influence functions to provide actionable, model-agnostic insights
for neural recommenders. It extends techniques originally designed
for latent factor models, making them applicable to a broader class
of neural recommender systems.

1https://github.com/dbis-uibk/CE4RS-Eval
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LXR [5], the state-of-the-art CE approach, employs self-supervised
learning to generate explanation masks that highlight critical user
data without perturbations using a gradient learning approach.

Our study includes two collaborative filtering recommenders:
(1) Matrix Factorization (MF), which decomposes the user-item in-
teraction matrix into lower-dimensional latent factors [1]. Recent
reproducibility studies indicate that MF continues to achieve com-
petitive performance [28]. We used the implementation from [5] for
easier comparison. (2) Variational Autoencoder (VAE), a generative
model that encodes and decodes data while learning a probabilistic
latent representation [18]. VAE-based models have demonstrated
strong performance in collaborative filtering tasks. In our experi-
ments, we adopt a VAE-based recommender with an architecture
similar to that of [18].

Table 1: CE methods performance for Explaining the MF Rec-
ommender on the Yahoo! Music Dataset based on top-3 ranks.
The best results in each metric are highlighted in bold, and
the second-best results are underlined. Arrows next to the
metrics indicate performance direction: a downward arrow
(↓) signifies that lower values are better, while an upward
arrow (↑) signifies that higher values are better. As shown in
the table, the performance of the explainers are consistent
across different recommender performance levels, shown as
training percentage.

TP
50
%

Method T = 5 T = 10
POS ↓ NEG ↑ POS ↓ NEG ↑

Jaccard 0.767 0.837 0.874 0.921
Cosine 0.766 0.836 0.876 0.920
LIME-RS 0.779 0.840 0.882 0.924
SHAP 0.813 0.820 0.915 0.902

ACCENT 0.751 0.830 0.856 0.910
LXR 0.743 0.861 0.829 0.929

TP
75
%

Jaccard 0.507 0.751 0.623 0.815
Cosine 0.502 0.753 0.618 0.817
LIME-RS 0.488 0.715 0.544 0.798
SHAP 0.631 0.665 0.712 0.767

ACCENT 0.459 0.7310 0.538 0.800
LXR 0.447 0.764 0.529 0.827

TP
10
0%

Jaccard 0.463 0.759 0.512 0.795
Cosine 0.457 0.776 0.507 0.801
LIME-RS 0.476 0.765 0.527 0.793
SHAP 0.618 0.616 0.666 0.663

ACCENT 0.453 0.692 0.491 0.748
LXR 0.431 0.792 0.471 0.811

4 Experiments and Results
Based on our hypothesis that extending evaluations to include
lower-ranked recommendations—such as the top-3 items—enhances
consistency, we incorporate lower-ranked items in the evaluation.
Particularly, we compute performance separately for top-1, top-2,
top-3, and higher-ranked recommendations, then aggregate these

performance values to obtain a comprehensive assessment. For in-
stance, computing the value for top-3 involves selectively masking
data from the user’s history to ensure that the third-highest recom-
mended item drops to a lower rank (rank ≥ 4). This method ensures
that the evaluation captures the influence of multiple recommenda-
tion ranks rather than relying solely on the highest-ranked item,
leading to a more stable comparison of CE methods.

To test this hypothesis, we evaluate six representative CE meth-
ods using the POS and NEG metrics, analyzing their performance
across four thresholds of recommendation length (top-𝑘) and four
levels of recommender performance. As shown in Figure 1, evalua-
tions based solely on the top-1 recommendation (Fig. 1a) exhibit sig-
nificant fluctuations on every two recommenders, particularlywhen
transitioning from the lowest-performing recommender (TP25%) to
TP50%. However, when extending the evaluation to the top-2 rec-
ommendations (Fig. 1b), we can already observe more consistency,
especially for high-performing recommenders (TP50%–TP100%).
Following this, setting the threshold to include the top-5 recom-
mendations (Fig. 1d) stabilizes the evaluation outcomes for the
highest performing recommenders (TP50%–TP100%). We observed
a similar pattern in other configurations, albeit with different thresh-
olds. For the MF recommender, the ranking of methods remained
stable even at smaller 𝑘 values across all datasets, in contrast to
the VAE. An example of this observation is presented in Table 1,
which shows the performance of CE methods across three levels
of recommender performance (determined by training percentage).
The results, based on top-3 values, demonstrate the consistency
of the comparative rankings among the methods. The observed
consistency when considering only the top-3 items stems from the
simplicity of the MF model, which results in a more straightforward
recommendation task and lower performance variability among
recommenders, ultimately leading to less variability in explainers.
Additionally, for the NEG metric, we found that a lower 𝑘 , specif-
ically 𝑘 = 2, consistently yielded stable performance across all
recommender configurations. More detailed results are available in
the accompanying Git repository presented in section 3.2. Overall,
this evidence highlights the importance of considering list-wise
recommendations in CE evaluations. Adopting such an approach
not only enhances evaluation consistency but also ensures better
alignment with the inherent characteristics of recommendation
systems.

Importantly, our findings show that evaluation consistency is
not uniformly affected across all metrics. POS, which measures how
quickly the explained item drops out of the top-𝐾 list under positive
perturbations, is particularly sensitive to the quality of the recom-
mender. In contrast, NEG, which checks whether the explained
item remains within the top-𝐾 under less relevant perturbations,
proves to be more stable even when the recommender is weaker.
These results suggest that the choice of metric—and the value of
𝑘—should be treated as a tunable hyperparameter, influenced by
both the dataset and the recommender architecture.

Moreover, the use of multiple performance checkpoints for the
recommender further reinforces the robustness of our evaluation
framework. By capturing performance across training stages (25-
100%), we ensure that the evaluation of explainers is not biased
by any single fixed model state. This approach not only provides
a more comprehensive view of the explainer’s effectiveness but
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also reveals how susceptible existing metrics are to fluctuations in
model quality.

5 Conclusion and Future Work
In this paper, we address a critical methodological gap in the eval-
uation of counterfactual explanations for recommender systems,
focusing on evaluation consistency. Our findings highlight the im-
portance of considering top-𝑘 recommendations when assessing
CEs. By extending evaluations beyond the top-1 recommendation,
we demonstrate consistency on current mainstream metrics for
evaluation. These findings not only address key methodological
gaps in counterfactual evaluation but also lay the groundwork for
future research into domain-adaptive CE metrics.

An important direction for future work is the development of
unified evaluation metrics that jointly consider both recommender
performance and explanation quality. As our study highlights, the
effectiveness of counterfactual explanation is closely tied to the
behavior and accuracy of the underlying recommender system.
Evaluating explanations in isolation may lead to misleading con-
clusions, especially when the recommender is poorly calibrated
or underperforms. By integrating recommendation performance
metrics—such as Hit Rate—with explanation metrics, we can better
assess the fidelity and trustworthiness of explanations in context.
Such composite metrics would not only provide a more holistic
view of system behavior but also help identify explanation methods
that maintain reliability across varying levels of recommendation
quality.
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