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ABSTRACT
Explainability in recommender systems is both crucial and challeng-
ing. Among the state-of-the-art explanation strategies, counterfactual
explanation provides intuitive and easily understandable insights into
model predictions by illustrating how a small change in the input
can lead to a different outcome. Recently, this approach has garnered
significant attention, with various studies employing different metrics
to evaluate the performance of these explanation methods. In this
paper, we investigate the metrics used for evaluating counterfactual
explainers for recommender systems. Through extensive experiments,
we demonstrate that the performance of recommenders has a direct
effect on counterfactual explainers and ignoring it results in inconsis-
tencies in the evaluation results of explainer methods. Our findings
highlight an additional challenge in evaluating counterfactual ex-
plainer methods and underscore the need to report the recommender
performance or consider it in evaluation metrics.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Over the past decade, the rapid growth of deep learning models has
driven remarkable progress in a wide range of fields, such as natural
language processing [4], computer vision [12], and recommender
systems (RecSys) [27, 28]. Addressing the need for transparency
and interpretability, Explainable Artificial Intelligence (XAI) has
garnered substantial interest across various communities. Among
these approaches, counterfactual explainers (CE) [10] aim to advance
model explainability. CE not only provides intuitive and easily
understandable insights into model predictions [19] but also enables
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users to grasp how minor alterations in the input can lead to divergent
outcomes. Counterfactual methods explore “what-if” scenarios to
determine how changes in a user’s data would affect the model’s
recommendations [13]. These methods are known for being user-
friendly and easy to understand [13]. As a result, departing from
conventional CE studies centered on tabular or image data, there is a
growing emphasis on CE within RecSys [14, 18, 25, 29, 35, 38].

Various studies have addressed the challenge of evaluating coun-
terfactual explainers across different domains, each considering their
unique characteristics [7, 20, 22, 34]. Particularly, previous research
has shown that model accuracy significantly impacts the perfor-
mance of explainer models [7, 17, 22, 34] and should be reported
for a consistent and reproducible research [8, 9, 36, 38]. We argue
that this is a critical and often overlooked aspect in the RecSys
community. We should evaluate the explainer model’s ability to
genuinely explain recommendations that are indeed of interest to
the user (i.e., a high-performing recommender), rather than merely
justifying uninteresting recommendations (i.e., a low-performing
recommender). In other words, a good explainer should effectively
explain the recommendations of a high-performing recommender
model. This is especially important in the case of CE models, where
the primary goal is to find the minimal change that results in a dif-
ferent recommendation. When the recommender is low-performing
and therefore, lacks robustness, any change may lead to a new set
of recommendations, making the explanation task less meaningful.
The importance and effect of model performance on explainer perfor-
mance have already been recognized in other communities [20] like
Graph Neural Network-based models [7, 17, 22, 34] where explainer
methods report the performance of the classifier models separately.

Recently, [8] presented metrics on CE for RecSys, although
overlooked the importance of model performance. In our experiments,
we demonstrate that the effectiveness of various explainer methods
varies depending on the performance levels of the recommenders used.
Since the performance of recommender models can vary significantly,
we first show how this variability affects the performance of explainer
models. Consequently, we argue for a metric that also considers model
performance. In this paper, we utilize two types of recommenders,
six explainer methods, and three real-world datasets to illustrate that
evaluating explainer methods consistently, requires considering the
performance of the recommenders.

2 BACKGROUND AND RELATED WORK
The field of interpretable ML has experienced notable advancements,
particularly in the context of local interpretability, as seen in early
works like LIME [32] and SHAP [23]. During this period, research
on interpretability primarily focused on making the model itself more
explainable [27]. Concurrently, the term “explainability” emerged,
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referring to methods that treat the model as a black box and aim
to retrospectively define its inner workings by so-called post-hoc
explanations. Counterfactual explainers opened avenues for more
nuanced explainer methods [7, 17, 22, 24, 34], enabling users to
understand not only why a model made a specific prediction but also
how different input configurations might alter the outcome.

For this study, we selected the most inclusive types of CE, specifi-
cally model-agnostic, post-hoc methods [37]. Model-agnostic meth-
ods are designed to be compatible with any differentiable recom-
mender algorithm. Unlike explanation techniques specific to matrix
factorization [2, 3], methods of our focus, can be used to explain
any differentiable recommender. Although there are related works
that use a similar approach in the context of CE for Graph Neu-
ral Network-based models [20], this is the first study to focus on
evaluation metrics of CE for RecSys.

3 EVALUATION SETUP
We use the MovieLens 1M (ML-1M) [15], Yahoo! Music [11] and
Pinterest [16] datasets, focusing on collaborative filtering models
based on implicit user-item interactions [30]. To simulate implicit
ratings in ML-1M, following [8], we retained only ratings of 3.5 or
higher and included users and items with at least two ratings. This
resulted in 575,128 ratings from 6,037 users across 3,381 items.
For the Yahoo! Music dataset we retained ratings of 70 or higher,
resulting in 19,155 users and 9,362 items. We split each dataset into
training and testing (80/20) subsets using user identifiers. For each
user, we generate a ranked list of recommendations and assess the
explanation of the top recommendation.

We train our recommenders based on Hit Rate with cutoffs@10,
50, and 100. We categorize the perfromance of each recommender
into three levels for comparing the effectiveness of explainer models.
For the highest-performing category (Gold), we train the recom-
mender for the full number of epochs. For the lowest-performing
category (Bronze), we select the best recommender after 30% of the
training epochs, and for the middle-performing category (Silver), we
select the best recommender after 60% of the epochs. We also ensure
that the performance hierarchy (from low to high), consistently shows
at least a 20% performance gain between each category, otherwise
we pick lower performing recommenders from each bin. For the
VAE recommender on the ML-1M dataset, shown in Table 1, the
Gold recommender achieved Hit Rates of 0.43 and 0.52, the Silver
recommender achieved 0.34 and 0.48, and the Bronze recommender
achieved 0.26 and 0.39 at cutoffs@10 and @50, respectively.

We hypothesize that if the ranking of explainer methods remains
consistent across Bronze, Silver, Gold recommenders with varying
performance levels, then recommender performance does not impact
the evaluation of explainer methods. For instance, an explainer
performing best with the Bronze recommender, but second best
with the Silver recommender and worst among others with the
Gold recommender, would confirm our hypothesis on the effect of
recommender performance on explainer performance.

We evaluate 18 different configurations, repeat our experiments
3 times and report the average performance. We share our dataset
processing scripts, the source code, and the hyper-parameters1.

1https://github.com/dbis-uibk/CFX-Metric

3.1 Evaluated Methods
We examine a range of explanation methods, from solid baselines
to recent approaches. Specifically, we have selected two similarity
methods, two traditional explainers, and two state-of-the-arts methods
to test our hypothesis:

Jaccard [6]/Cosine [33] Similarity generates explanations for an
item by comparing it to items in the user’s history using Jaccard [6]
or Cosine [33] pairwise similarity calculated based on users who
interacted with both items.

LIME-RS [26] is an adaptation of the LIME framework tailored
for RecSys. It generates explanations by approximating the com-
plex recommender model with a simple, interpretable linear model,
focusing on a local neighborhood around the user’s data.

SHAP (SHapley Additive exPlanations) [38] is a counterfactual
method that calculates the contribution of each feature to the model’s
predictions. It uses game theory to assign a value to each feature
based on its impact on the output.

ACCENT [36] is a CE framework that leverages influence func-
tions to provide model-agnostic, actionable insights into why certain
recommendations are made, extending the approach originally devel-
oped for latent factor models to a wider range of neural recommender
systems.

LXR [8] represents the current state-of-the-art for CE for RecSys.
It uses a self-supervised learning approach to create explanation
masks that highlight the most influential user data for specific
recommendations, without requiring perturbations.

We consider two collaborative filtering recommenders in our study.
(1) Matrix Factorization (MF) decompose a user-item interaction
matrix into lower-dimensional latent factors [1]. Recent reproducibil-
ity studies show that they (still) reach competitive results [31]. We
have used the same implementation as [8] for easier comparison. (2)
Variational Autoencoder (VAE) generative models that encode and
decode data while learning a probabilistic latent representation [5].
They have been shown to be effective for collaborative filtering [21].
We included a VAE-based recommender with a similar architecture
to [21].

3.2 Evaluated Metrics
We examine CE models using implicit user data, as a binary vector
𝑥 ∈ {0, 1}𝑉 indicating items the user has consumed [8]. Recom-
mendations are given as ranked lists based on the recommender’s
predicted affinity scores, 𝑓𝜃 (𝑥𝑢 ) [𝑖], for each item 𝑖. We introduce
perturbations by removing items from the user’s vector 𝑥 according
to their explainability score from the explainer. In positive pertur-
bation tests, items are removed in descending order of importance,
expecting the explained item’s score to drop and its rank to decrease.
In negative perturbation tests, items are removed in ascending order
of importance, expecting the explained item to maintain its high
score and rank [8]. We employ stepwise perturbations where on
each step 1

𝑀
of the user’s data is deleted according to its explainer

relevance score. 𝑀 is a positive integer that serves as a granularity
factor for the number of perturbation steps. Following [8], we set
the value to 𝑀 = 10. Let 𝑥𝑢 represent user 𝑢’s historical items
vector. In a positive perturbation test, 𝑥pos

𝑢 (𝑚) denotes user 𝑢’s data
after removing 𝑚

𝑀
of the most important items according to the

explainer. For negative perturbations, 𝑥neg
𝑢 (𝑚) represents the data
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Table 1: AUC Values for Explaining Three Core Categories (VAE Recommender) on the ML-1M Dataset. The best results in each
evaluation are highlighted in bold, and the second-best results are underlined. Arrows next to the metrics indicate performance direction:
a downward arrow (↓) signifies that lower values are better, while an upward arrow (↑) signifies that higher values are better. As shown
in the table, the performance of the explainers varies across different recommender categories.

Br
on

ze
Re

c.

Method
Metric k = 5 k = 10 k = 20 DEL ↓ INS ↑ NDCG ↓POS ↓ NEG ↑ POS ↓ NEG ↑ POS ↓ NEG ↑

Jaccard [6] 0.718 0.898 0.816 0.945 0.885 0.966 0.0032 0.0095 0.652
Cosine [33] 0.684 0.902 0.784 0.945 0.862 0.966 0.0032 0.0096 0.628

LIME-RS [26] 0.711 0.916 0.809 0.948 0.880 0.967 0.0037 0.0071 0.655
SHAP [38] 0.813 0.763 0.886 0.849 0.930 0.913 0.0043 0.0066 0.729

ACCENT [36] 0.625 0.861 0.720 0.926 0.803 0.958 0.0027 0.0110 0.597
LXR [8] 0.587 0.878 0.686 0.927 0.773 0.955 0.0029 0.0106 0.564

Si
lv

er
Re

c.

Jaccard [6] 0.380 0.715 0.461 0.808 0.554 0.872 0.0069 0.0186 0.413
Cosine [33] 0.368 0.716 0.449 0.805 0.541 0.868 0.0068 0.0187 0.407

LIME-RS [26] 0.444 0.725 0.540 0.798 0.635 0.848 0.0085 0.0153 0.459
SHAP [38] 0.569 0.502 0.669 0.589 0.75 0.679 0.010 0.0115 0.548

ACCENT [36] 0.426 0.538 0.507 0.667 0.595 0.769 0.0072 0.0168 0.460
LXR [8] 0.427 0.670 0.515 0.747 0.607 0.804 0.0077 0.0184 0.451

G
ol

d
Re

c.

Jaccard [6] 0.447 0.842 0.547 0.892 0.648 0.923 0.0066 0.0187 0.462
Cosine [33] 0.430 0.841 0.527 0.888 0.624 0.921 0.0065 0.0190 0.451

LIME-RS [26] 0.540 0.833 0.644 0.877 0.737 0.912 0.0077 0.0155 0.531
SHAP [38] 0.670 0.607 0.757 0.701 0.830 0.783 0.0098 0.0118 0.625

ACCENT [36] 0.515 0.668 0.597 0.784 0.686 0.862 0.0066 0.0177 0.530
LXR [8] 0.604 0.589 0.696 0.675 0.776 0.761 0.0077 0.0140 0.058

after removing 𝑚
𝑀

of the least important items. In both tests, we
perform𝑚 = 1, . . . , 𝑀 steps, gradually deleting items in decreasing
or increasing order of importance. The rank of the explained item for
user 𝑢 is denoted by rank(𝑥𝑢 ). Given these notations, we evaluate
the explainer models’ performance by measuring the area under the
curve (AUC) in following counterfactual perturbation tests:

(1) Positive Perturbations@K (POS-P@K) measures how quickly
the explained item falls out of the top 𝐾 recommendations during a
positive perturbation test. For each step𝑚, with ⊮[·] as the indicator
function, it is defined as

POS−𝑃@𝐾 (𝑚) = ⊮
[
rank

(
x𝑝𝑜𝑠𝑢 (𝑚)

)
≤ 𝐾

]
. (1)

(2) Negative Perturbations@K (NEG-P@K) assesses if the ex-
plained item remains in the top 𝐾 recommendations in a negative
perturbation test. It is represented as

NEG−𝑃@𝐾 (𝑚) = ⊮
[
rank

(
x𝑛𝑒𝑔𝑢 (𝑚)

)
≤ 𝐾

]
. (2)

(3) Deletion Perturbations (DEL-P) evaluates how the recom-
mender’s score for the explained item decreases as the most crucial
user data is removed. It is computed as

DEL-P@K(m) = 𝑓
(
x𝑝𝑜𝑠𝑢 (𝑚)

)
[𝑖] . (3)

(4) Insertion Perturbations (INS-P) assesses how the recom-
mender’s confidence improves as the most important user data is
gradually added to an initially empty user vector. It is similar to a
negative perturbation test, but in reverse. The INS-P is defined as

INS-P@K(m) = 𝑓

(
x𝑛𝑒𝑔𝑢 (𝑀 −𝑚)

)
[𝑖] . (4)

(5) NDCG Perturbations (NDCG-P) uses the Normalized Dis-
counted Cumulative Gain (NDCG) in a positive perturbation test.
It evaluates how quickly the explained item drops in ranking as the
most important user data is gradually removed. For each step𝑚,

NDCG-P(m) =
1

log2
(
1 + rank

(
x𝑝𝑜𝑠𝑢 (𝑚)

)) . (5)

For POS-P, DEL-P, and NDCG-P, lower AUC values indicate better
performance, showing the explained item drops quickly when key
data is removed. Conversely, for NEG-P and INS-P, higher AUC
values are preferable, indicating increased confidence in the explained
item as important data is added. The metrics above are defined for a
single user. We report our evaluations below based on the average
value over a hidden test set of users.

4 EXPERIMENTS AND RESULTS
Our study aims to determine whether recommender performance
should be considered when evaluating explainer methods for RecSys.
To test our hypothesis regarding the consistency of explainer methods
ranking, we train VAE and MF recommenders on three levels of
performance, explain them using six explainer methods, and evaluate
their performance with five explainer metrics. The full experimental
results are available in our Git repository.

In Table 1, we present the performance of the explainer methods
for the VAE recommender on the ML-1M dataset. As shown, LXR
and ACCENT are the best-performing methods in the POS@k, DEL,
INS, and NDCG metrics for the Bronze recommender. However,
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Figure 1: Performance summary of explainers across various metrics and datasets. Each figure illustrates the change in the best-
performing explainers across three levels of recommender performance. For all metrics, lower values indicate better performance.

this diminishes for the Silver recommender and for the Gold recom-
mender, similarity-based methods outperform others in most metrics.
This shows that the performance of explainer methods is inconsistent
across these levels. Specifically, the ranking of the best-performing
explainers varies significantly. For instance, LXR outperforms AC-
CENT by 4.2% in POS@10 with the Bronze recommender. However,
Cosine surpasses LXR by 8% with the Silver recommender and by
17% with the Gold recommender.

We repeat the same experiment with other recommenders and
datasets and observe a similar picture. A summary of these results is
illustrated in Figure 1, showing how different explainers perform. For
instance, in Figure 1(a) we compare methods on POS@20 using VAE
recommender in Pinterest dataset, where we observe that Jaccard and
LXR outperform others on Bronze recommender, then Jaccard and
Cosine are leading methods in Silver recommender and ACCENT is
close to best performance. Then ACCENT keeps getting better and
outperforms other methods on the Gold Recommender. In Figure 1(b)
we compare methods based on DEL using MF recommender on
ML-1M dataset, where we observe that ACCENT outperforms on
Bronze recommender, but LXR outperforms in Gold recommender.
We can also see the difference in the performance of the non-leading
methods where Jaccard and Cosine are on par with ACCENT on
Gold recommender, in contrast to their performance on the Bronze
recommender. Also in Figure 1(c) we compare methods based on
NDCG using MF recommener for Yahoo! Music dataset, where we
observe that ACCENT outperforms on Bronze recommender but
LXR outperforms in Gold recommender. When comparing the per-
formance levels of explainers within the VAE recommender system,
it is informative to look beyond just the top-performing models.
Specifically, we observe that the rank of explainers changes 43.1%
of the time when moving from a Bronze to a Silver recommender,
31.1% of the time when moving from Silver to Gold recommender,
and 67.4% of the time when moving directly from Bronze to Gold
recommender. This experiment demonstrates the intuitive effect of
recommender quality on the performance of explainer methods.

5 CONCLUSION AND FUTURE WORK
We investigated the impact of recommender performance on the
efficacy of counterfactual explainer (CE) methods within the domain
of RecSys. Our analysis included two types of recommenders, six

explainer methods, and three real-world datasets to illustrate our
findings.

Our experiments revealed that the performance of the recom-
mender significantly influences the effectiveness of explainer meth-
ods. Specifically, high-performing recommenders yielded different
results in terms of ranking and quality of explainers compared to
low-performing ones. It is essential to emphasize that our objective is
neither to compare these methods nor to imply that one outperforms
the others. The purpose of our experiments is not to benchmark or
evaluate the relative performance of these methods. Our findings
underscores the necessity of considering the performance of the
recommender system when evaluating and comparing CE methods.
Ignoring this factor can lead to misleading conclusions about the
capabilities of explainer methods. Therefore, we propose that fu-
ture research and evaluations in this field should adopt a metric
that includes the performance of the underlying recommender, to
ensure more consistent and reproducible results or at least report
the recommender performance separately. We note that our primary
objective is not to compare and benchmark various explainer meth-
ods, but rather to illustrate how the performance of recommender
systems influences these methods. As a direction for future work, we
suggest comprehensive benchmarking of current CE methods under
standardized experimental settings to provide a clearer comparison
of their capabilities. By incorporating these advancements, we can
achieve more accurate assessments and drive further progress in
explainable AI within RecSys, ultimately enhancing user trust and
understanding of AI-driven recommendations.
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