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Abstract The goal of the PAN lab is to advance the state of the art in
text forensics and stylometry through an objective evaluation of new and
established methods on new benchmark datasets. In 2025, we organized
four shared tasks: (1) generative Al detection, particularly in mixed and
obfuscated authorship scenarios, (2) multilingual text detoxification, a
continued task that aims re-formulate text in a non-toxic way for mul-
tiple languages, and (3) multi-author writing style analysis, a continued
task that aims to find positions of authorship change, and (4) gener-
ative plagiarism detection, a new task that targets source retrieval and
text alignment between generated text and source documents. PAN 2025
concluded successfully with 56 notebook papers.
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1 Introduction

PAN is a workshop series and a networking initiative for stylometry and digi-
tal text forensics. PAN hosts computational shared tasks on authorship analy-
sis, computational ethics, and the originality of writing. Since the workshop’s
inception in 2007, we organized 77 shared tasks' and assembled 60 evalua-
tion datasets? plus nine datasets contributed by the community. In 2025, we
organized four tasks that concluded in 57 notebook papers.

First, the Voight-Kampff Generative AI Detection task asks to distinguish
between human and machine-written text, with a focus on detector sensitivity in
the presence of obfuscation and mixed human-machine authorship. The subtask 1
continues the research from 2024 in collaboration with the ELOQUENT lab and
frames Al detection as an authorship verification task, tested across a large
number of domains and obfuscation techniques to test detector robustness. The
subtask 2 asks to distinguish between 6 different forms of human-AI collaboration
in a given document, ranging from fully human-written to text with deep Al
intervention. The Voight-Kampff Generative AI Detection task resulted in 30
notebook submissions. The task details are described in Section 2.

Second, the continuation of the Multilingual Text Detoxification task asks to,
given a toxic piece of text, re-write it in a non-toxic way while saving the main
content as much as possible. The task was extended to include texts from 15
languages—adding to 2024 edition Italian, French, Hebrew, Hinglish, Japanese,
and Tatar—and had cross-lingual and multilingual as well as supervised and
unsupervised challenges. The Multilingual Text Detoxification task resulted in
12 notebook submissions. The task details are described in Section 3.

Third, the continuation of the Multi-Author Writing Style Analysis task asks
to, given a document, determine at which positions the author changes. This
task was revamped for 2023 with a new dataset and structured around topical
heterogeneity as an indicator of difficulty. While the previous iterations asked to
separate authors at a paragraph level, we increased the difficulty for this year and
asked participants to separate at the sentence level. The Multi-Author Writing
Style Analysis task resulted in 11 notebook submissions. The task details are
described in Section 4.

Fourth, the new Generated Plagiarism Detection task asks to, given a source
and an LLM-obfuscated, suspicious document, determine the positions where the
suspicious document reuses text from the source. The task resulted in 3 notebook
submissions. The task details are described in Section 5.

PAN is committed to reproducible research in IR and NLP, hence all par-
ticipants are asked to submit their software (instead of just their predictions)
through the submission software TIRA. With the recent updates to the TIRA
platform [30], a majority of the submissions to PAN are publicly available as
docker containers. In the following sections, we briefly outline the 2025 tasks
and their results.

'Find PAN’s past shared tasks at pan.webis.de/shared-tasks.html
2Find PAN’s datasets at pan.webis.de/data.html
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Figure 1. Hierarchy of authorship verification problems from “easiest” (1) to “hard-
est” (7), involving LLM-generated text. Ignoring mixed human and machine authorship,
the difficulty arises from the pairing constraints imposed by the possible assignment
patterns. denotes LLM-generated text, while and denote human-authored
text (same letter meaning same human author).

2 Voight-Kampff Generative AI Detection

Authorship verification is a fundamental task in author identification. PAN has
continuously been organizing authorship verification tasks for years [8, 9, 10, 11]
and with generative Al / LLM detection being fundamentally also an authorship
verification task [15], decided to “delve” into that realm. So, in 2024 we offered,
for the first time, the “Voight-Kampff” Generative AI Authorship Verification
task [14, 3], which attracted a large number of submissions.

For the 2024 installment, we formalized different task variants and ordered
them from easiest to hardest (Figure 1). To establish a baseline, we decided to
start with the easiest variant, in which participants were given a pair of texts
of which exactly one was of human and the other of machine origin. This year,
we move on to the harder variant, in which participants are given only one text.
This variant reflects a more realistic scenario of authorship verification “in the
wild,” aligning with the settings commonly addressed in other LLM detection
shared tasks.

Moreover, we extend the task to two distinct subtasks: (1) The classic binary
“Voight-Kampff” AT Detection Sensitivity task, and (2) a multi-class Human-AI
Collaborative Text Classification task. The subtask 1 is organized in collabora-
tion with the ELOQUENT Lab in a builder-breaker style similar to the previ-
ous year: PAN participants build systems to identify machine authorship, while
ELOQUENT participants supply datasets to try to break the systems.

A more detailed description and analysis of the submissions and the results
can be found in the joint PAN and ELOQUENT task overview paper [13].

2.1 Subtask 1: Voight-Kampff AI Detection Sensitivity

The subtask 1 is in essence the classic binary detection task known also from
other LLM detection shared tasks. However, we are testing the limits of the
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detectors by crafting a test set with text “obfuscations” that try to evade detec-
tion. Apart from drastic text length restrictions, the obfuscations we tested or
received from ELOQUENT participants in the previous year turned out to be
mostly ineffective. So this year, we tested what happens when the human writers
obfuscate their style and whether machines can replicate this.

Dataset We created the task datasets from a selection of 19*"-century English

fiction from Project Gutenberg, as well as the extended Brennan-Greenstadt [19]
and Riddell-Juola [93] corpora. The latter two were constructed by collecting ex-
isting essays and then asking the authors to write another text describing their
neighborhood but, in doing so, try to conceal their identity. No further instruc-
tions were given on how to achieve that. To generate LLM versions for all texts,
we used the same summarize-then-expand technique as last year by prompting
GPT-40 to generate bullet-point summaries of the input texts. The model was
instructed to extract the main topic, a list of key points, the narrative point of
view, the grammatical tense, and certain apparent style or obfuscation markers.
We then used 13 LLMs to replicate both the original essays and the obfusca-
tions from the summaries and style instructions. In addition to the neighborhood
prompts, we asked the LLMs to also generate texts in the style of a 7-year-old,
in subject-object-verb “Yoda” grammar, or with alliterations. Further, we added
random words to the prompts which we asked the model to ignore, and we
increased the temperature to the highest value that still produced sensible text.

Participants were given a training and a validation split of the dataset, which
included only the original human fiction and essay texts and plain LLM versions
of them. The obfuscated texts (both human and LLM) were held back for the
test set. Participants were allowed to use external training and validation data,
including last year’s training set. The test set included both obfuscated and
unobfuscated texts, as well as a small subsample of human and LLM U.S. news
articles from last year’s test dataset (which we never published).

Baselines We provided implementations of the following three baseline systems:
As zero-shot baselines, we provided (1) Binoculars [36] (using Llama 3.1) and
(2) a simple PPMd-based compression model using the compression-based cosine
measure |77, 35]. The operating points for both were tuned on the validation set
that was handed out to participants. As a supervised baseline, (3) we trained a
linear SVM on the top-1000 TF-IDF 1-4-grams from the validation set. The TF-
IDF detector and Binoculars can be considered state of the art, the compression
model marks a more conservative lower baseline.

Evaluation All systems were submitted and evaluated on Tira [30]. At test
time, the participants had to calculate a score between 0 and 1 for each text,
indicating the likelihood that the text was LLM-generated. A score of exactly
0.5 could be given to signal a non-decision.

For each participant, we computed a confusion table and the following scores,
which we used in previous authorship verification shared tasks as well:
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Table 1. Arithmetic mean of all evaluation measures per submission for subtask 1.

Team Score System

Macko [59] 0.899 LoRA-tuned Qwen3 and data augmentation [60]

Seeliger [78] 0.880 Document-word correlations

Zaidi [99] 0.879 Fine-tuned BERT and data augmentation

Yang [98] 0.877 RoBERTa with contrastive learning

Teja [85] 0.874 Ensemble: Mixture of experts with PLMs

Marchitan [61] 0.872 Ensemble: LightGBM, XGBoost, Log. Regression, SVM
with Qwen3 embeddings

Liu [57] 0.871 Ensemble: Fine-tuned PLM with contrastive loss

Valdez-V. [89] 0.869 Syntactic graphs and embeddings with GNNs

Voznyuk [92] 0.863 DeBERTa-v3 with multi-task learning (task, genre, model
family classification)

TF-IDF SVM 0.856 Baseline TF-IDF SVM

Pudasaini [72] 0.852 Ensemble: SVM bagging of fine-tuned PLMs

Ostrower [67] 0.851 XGBoost with binoculars + stylometric features

Ochab [66] 0.844 LightGBM classifier with stylometric features

Vélpel [90] 0.843 MLP with syntax n-gram features

Jimeno-G. [42] 0.838 Stacking ensemble with stylometric and word features

Sun [83] 0.835 Bi-CE [34] loss function + 25 stylometric features

Basani [6] 0.831 XGBoost classifier with token surprisal features

Titze [86] 0.827 Logistic regression on surprisal scores, entropy and JSD
from two LLMs

Binoculars 0.818 Baseline Binoculars Llama3.1 [36]

Larson [50] 0.814 SVM with word and punctuation frequency features

Huang [38] 0.807 Fine-tuned RoBERTa + training data augmentation

Kumar [47] 0.788 Fine-tuned DistillBERT + stylometric features

PPMd CBC 0.758 Baseline PPMd Compression-based Cosine [35, 77|

Liang [53] 0.753 ModernBERT fine-tuning + loss-weighting based on ex-

ample difficulty

— RocC-Auc: The area under the Receiver Operating Characteristic curve.

— BRIER: The complement of the Brier score (mean squared loss)

— C@1: A modified accuracy score that assigns non-answers (score = 0.5) the
average accuracy of the remaining cases [68].

— Fy: The harmonic mean of precision and recall.

— Fosu: A modified Fg 5 measure (precision-weighted F measure) that treats
non-answers (score = 0.5) as false negatives [12].

— MEAN: The arithmetic mean of all previous measures

Submitted Systems We received 20 submissions of which 7 beat the strongest
baseline (TF-IDF SVM) and 9 more beat the second-strongest baseline (Binoc-
ulars). Overall, most systems had quite high mean scores above 0.9 with the
best approach being almost perfect at 0.991. Table 1 shows the ranking of all
participating teams ordered by their systems’ MEAN scores on the test set (ex-
cluding ELOQUENT submissions). If teams submitted multiple systems, only
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Table 2. Subtask 2 training, development and test set distribution across six categories.

Label Text Category ‘ Train Dev Test

0 Fully human-written 75,270 12,330 34,509
1 Human-written, then machine-polished 95,398 12,289 43,154
2 Machine-written, then machine-humanized 91,232 10,137 25,234
3 Human-initiated, then machine-continued 10,740 37,170 22,802
4 Deeply-mixed text 14,910 225 12,500
5 Machine-written, then human-edited 1,368 510 2,557

Total 288,918 72,661 140,756

the highest score is shown. A more detailed break-down of how systems respond
to individual obfuscations is described in the extended task overview paper [13].

In total, this subtask attracted 20 teams to submit systems in addition to the
baseline systems we provided. Table 1 shows the best-performing system of each
team that submitted notebook papers and a brief description of their approach.

2.2 Subtask 2: Human-AI Collaboration

The integration of Al technologies into the writing process has significantly al-
tered traditional notions of authorship. The line between human and Al contri-
butions has become increasingly ambiguous. Al involvement increasingly rises
from none to complete [39]. From the perspective of ethical and intellectual ac-
countability, we identify the role of humans and Als for six types of text. Given
a document collaboratively authored by humans and Als, the subtask 2 is to
classify it into one of the following six categories:

i. fully human-written;

ii. human-written, then machine-polished;
iii. machine-written, then machine-humanized (obfuscated);
iv. human-initiated, then machine-continued;

v. deeply mixed text; where some parts are written by a human and some are

generated by a machine;

vi. machine-written, then human-edited.

Dataset The training and validation sets were constructed from existing
datasets for fine-grained machine-generated text detection, comprising 288,918
examples for training and 72,661 for validation. For constructing the test set, we
collected student essays, research papers, and peer reviews. We also incorporated
several newly released datasets to comprehensively evaluate the generalization
of detection systems across unseen generators and domains. The result test set
consists of 140,756 instances. Detailed data distribution across six categories is
shown in Table 2.

Participants were given the training and development sets. Although they
were not allowed to use external training and validation data, data augmentation
strategies such as back-translation, synonym replacement, random word deletion,
and replacement were allowed.
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Table 3. Subtask 2 evaluation results of 22 submissions, ranking by macro-recall, along
with macro-F1 and accuracy, with one delayed submission.

Rank Team Recall F1 Acc ‘ System Description
1 mdok [59] 64.46 65.06 74.09 QLoRa PEFT fine-tuned Qwen3-4B-Base.
2 Bohan Li [51] 61.72 61.73 69.28 Under-sample high-frequency classes and

adopt data augmentation for underrepre-
sented classes, along with R-Drop regular-
ization for DeBERTa-v3-base fine-tuning.
3 Advacheck [92] 60.16 60.85 69.04 Shared Transformer Encoder between sev-
eral classification heads trained to distin-
guish the domains.

4 StarBERT [108]  57.46 56.31 66.81 Combine the deep language understand-
ing of DeBERTa-v3-large and the high-
dimensional mapping ability of Star-

Block2d.

5 Atu [96] 56.87 56.45 66.30 DeBERTa enhanced by contextual and ge-
ometric attention

6 TaoLi [52] 56.74 55.39 66.27 Use DeBERTa-v3-Large

7 ReText.Ai [40] 56.11 55.25 64.79 Fine-tune Gemma-2 2B for sequence classi-
fication with multiple classification heads.

8 DetectTeam [82]  54.49 54.40 62.89 Fine-tune DeBERTa-V3-Large and com-
bining multi-scale features.

9 WeiDongWu [95]  54.09 53.57 63.01 Combine the contextual strength of BERT

with the sequence modeling capabilities of
Transformer layers.

10 zhangzhiliang [107] 54.06 52.81 61.65 Fine-tune DeBERTa-V3-Large and com-
bine it with BiLSTM and attention mech-
anism.

11 CNLP-NITS- 54.05 53.49 62.23 Soft and Hard Mixture of Experts (MoE)

PP [85] architectures with DeBERTa-V3-Large

12 a.dusuki 52.83 51.44 60.45 -

13 Steely [78] 52.14 51.81 59.88 Cumulative sum of token-Level correlation
signals

14 a.elnenaey 49.56 50.10 58.96 -

Baseline 48.32 47.82 57.09 Fine-tune RoBerTa
15 VerbaNex 47.15 47.15 56.24 Fine-tune Roberta with class balancing,
AT [32] data augmentation, and calculation of spe-
cific weights for each unbalanced class.

16 Unibuc- 44.33 42.76 51.42 Combine features at different layers ex-

NLP [61] tracted using Transformers with layer-wise
projection and attentive pooling.

Nexus Inter- 33.86 31.86 35.45 Fine-tune transformer models with data

rogators [99] augmentation strategies on underrepre-
sented classes.

17 johanjthomas 33.71 31.63 37.85 -

18 lza 32.90 31.98 33.20 -

19 NanMu 32.87 31.79 34.52 -

20 hkkk 32.79 31.95 34.21 -

21 YoussefAhmed21 16.48 14.98 21.22 -

Baseline To establish a baseline, we fine-tuned a pre-trained transformer-based
model RoBERTa on the training set. Fine-tuning was performed using the Hug-
ging Face Trainer API with the following configuration: learning rate of 2x 1072,
batch size of 16 for both training and evaluation, weight decay of 0.1, and a total
of 3 training epochs. Checkpoints were evaluated at the end of each epoch, and
the best-performing model on the development set was retained for subsequent
testing. The baseline achieved a macro-recall of 68.67% on the development set,
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with corresponding macro-F1 and accuracy scores of 61.26% and 56.71%, re-
spectively.

Evaluation Predictions of all systems were submitted and evaluated in Co-
daLab. At test time, participants assigned the predicted label among [0, 1, 2,
3, 4, 5] for each text, indicating its category. Participants in the leaderboard
were ranked by macro-recall. Macro-recall is selected as the primary evaluation
metric for two reasons: (i.) it gives equal importance to each class, preventing
performance for majority classes from dominating the overall score on an un-
balanced test set; and (4i.) macro-recall provides a more focused view on the
model’s ability to capture all positive instances for every class, compared with
macro-F1 balancing precision and recall for each class. As additional evaluation
metrics, we computed accuracy and macro-F1.

Submitted Systems 22 teams submitted their predictions to CodalLab, of
which 16 submitted notebook papers [59, 78, 61, 99, 92, 85, 51, 40, 82, 96,
107, 31, 95, 52, 108, 32]. The performance of 14 teams is above the baseline,
and 8 teams are below fine-tuned RoBERTa-base, as shown in Table 3. Many
teams fine-tuned DeBERTa-v3-large and achieved better results than RoBERTa.
Larger language models such as Qwen-3 4B and Gemma-2 2B were superior
to DeBERTa and RoBERTa. The performance drop observed on the test set
compared to the development set highlights the need for further improvement
in fine-grained human-AlI collaborative text detection.

3 Multilingual Text Detoxification

Text detoxification is a subtask of style transfer, aiming to transform toxic text
into a neutral version while preserving its original meaning. With the rapid
advancement of language models, concerns have intensified around their poten-
tial to generate harmful or biased content with many works developing toxi-
city mitigation in LLMs approaches [94]. A key challenge in this space is de-
signing detoxification techniques that generalize effectively across languages.
Building on our 2024 release of a multilingual parallel detoxification corpus
covering 9 languages [27] (English, Spanish, German, Chinese, Arabic, Hindi,
Ukrainian, Russian, Amharic), we now extend the task to explore both mul-
tilingual and cross-lingual generalization. This year’s shared task introduces 6
additional languages—Italian, French, Hebrew, Hinglish, Japanese, and Tatar—
offering new challenges for scalable and inclusive detoxification methods.

Dataset We provided several datasets for participants to train their models and
enhance their approaches:
— Multilingual ParaDetox: Train part of parallel toxic-neutral 400 pairs per
9 languages from 2024 edition;
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Table 4. Results of the final evaluation of the TextDetox test phase. Scores are sorted
by the average Joint scores: with parallel (P) and without parallel (NP) training data.
Baselines are highlighted with gray , Human References are highlighted with | green .

Team AvgP AvgNP System

Human Ref- 0.854 0.847 Human paraphrases from our Multilingual Pa-

erences raDetox

ducanhhbtt [23] 0.685 0.643  LoRA fine-tuning and advanced prompting with
Gemma3-12B

MetaDetox [18] 0.685 0.609 CoT prompting of DeepSeek with outputs re-
ranking

sky.Duan [97] 0.676 0.501  Combination of our mTO0-detox baseline with
Qwen3

Pratham [79]  0.676 0.575  Fine-tuned mTO with lexical refining

jellyproll 0.675 0.605 mT0 baseline with improved vocab

mT0 0.675 0.572 Fine-tuned mT0 on 9 languages train ParaDetox

Jiaozipi [58] 0.656 0.607  Ensemble of LLMs with RISE framework

SVATS [44] 0.656 0.599  Combination of fine-tuned Qwen2 and Gemma2

nikita.sushko [91().628 0.512  Additionally tuned mTO0 with our and synthetic
data

ylmmecl [48] 0.612 0.471  Combination of BART, mT0, and LLaMa3.1 for
outputs ranking

Gopal [45] 0.611 0.595 Replacement of toxic spans with GPT40-mini
d1n910 [69] 0.604 0.575  CoT with DeepSeek-R1

GPT-03 0.562 0.484  Few-shot Prompting of GPT-03mini

GPT-04 0.560 0.535  Few-shot Prompting of GPT-04

Something 0.549 0.511 Llama3.1 with Reasoning with top5 selection
Awful

Delete 0.536 0.510 Elimination of toxic keywords

Backtr. 0.481 0.342 Translation of data to English+BART-detox

Duplicate 0.475 0.482 Simple duplication of toxic input

— Multilingual Toxic Lexicon: Collection from open corpora of toxic key-
words for all 15 languages;
— Multilingual Toxic Spans: Toxic collocations extracted with GPT-4 from

9 languages from the train Multilingual ParaDetox dataset [26];

— Multilingual Toxicity Classification Data: Collection of binary toxicity
classification corpora for all 15 languages.

Then, we extended our test set to 6 new languages for which no parallel train-
ing data were provided: Italian, French, Hebrew, Hinglish, Japanese, and Tatar.
The language stakeholders utilized various opensourced toxicity or hate speech
classification datasets then rewriting the texts into neutral version with native
speakers. We provided the same annotation instructions as for 2024 edition [27].
The goal of annotation was to obtain detoxification pairs for 600 unique toxic
original instances per each language to form the test set.
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Phases and Tracks We structured our shared task into two phases: (i) De-
velopment phase: Participants were provided with the Multilingual ParaDetox
parallel training data for 9 languages, alongside 600 test toxic instances for each
of these languages and an additional 100 toxic instances for each of 6 new lan-
guages. (ii) Test phase: Participants received the full 600 toxic test instances
for all 15 languages, including the newly introduced ones.

To emphasize both multilingual and cross-lingual generalization, we reported
results across two evaluation tracks in each phase:

— AvgP: The average performance across the 9 languages with available Paral-
lel training data according (hence the name). This track focuses on building
multilingual detoxification models that generalize well across multiple high-
resource settings.

— AvgNP: The average performance on the 6 new languages for which No
Parallel training data was released—only test sets were provided. This track
presents a cross-lingual challenge, encouraging participants to develop ap-
proaches that transfer knowledge from the training languages or leverage
other external resources to perform well in low-resource settings.

Evaluation For both phases, we provided the leaderboard based on an auto-
matic evaluation setup. We evaluate the outputs based on three parameters—
style of text, content preservation, and conformity to human references—
combining them into the final Joint score:

— Style Transfer Accuracy (STA) ensures that the generated text is indeed
more non-toxic. It was estimated with XLM-R [22] 1arge instance fine-tuned
for the binary toxicity classification task for our target languages. We com-
pared the non-toxicity scores of models outputs with human references.

— Content Similarity (SIM) is the cosine similarity between LaBSE embed-
dings [29] of both the toxic source and human references and the generated
texts.

— Fluency is used to estimate the proximity of the detoxified texts to human
references and their fluency estimated with xCOMET [49].

Final Joint Score (J) was the aggregation of the three above metrics:

J=

1 > STA (a7, y;) - (0.4%SIM(x;, ;) + 0.6+ SIM(2}*/ , y;)) - FL(x;, 27/ , y;)
We calculated all the metrics separately per each language. In the end, we
calculated the Average score of Joint scores per all languages in the track.

Baselines We provided several both unsupervised and more modern baselines.
For the easy start, we provided:
i. Duplicate: a simple duplication of the toxic input.
ii. Delete: elimination of a toxic keywords based on a predefined dictionary for
each language.
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iii. Backtranslation: tranlsation of any input to English and detoxification with
BART-detox model and translation back.
iv. LLMs prompting: GPT-40 and GPT-03-mini zero-shot prompting.
For supervised approaches, we provided mBART [26] and mTO [75] models
fine-tuned on 9 languages training ParaDetox.

Submitted Systems Per both development and test phases, we got 31 sys-
tems submitted that resulted in 12 notebooks submissions [97, 18, 79, 58, 87,
28, 23, 44, 48, 91, 45, 69]. While there is indeed a very big tendency of LLMs
prompting solutions, still, many submissions were based on various improve-
ments over seq2seq generative models or LLMs. Thus, many participants tried
chain-of-thoughts or other advanced prompting techniques over recent powerful
LLMs like DeepSeck [25], LLaMa3 [1], Qwen [4], and Gemma [24], as well as
special fine-tuning and cross-lingual inference with mT0 [65].

Results The results of the most interesting submissions are presented in Table 4.
First, only five submissions outperformed our strongest baseline, mT0, and even
these remained well below human reference performance. Additionally, many
systems showed imbalanced results between languages with and without training
data. Nevertheless, several creative approaches demonstrated that effective cross-
lingual text detoxification is feasible with modern language models.

4 Multi-Author Writing Style Analysis

Writing style analysis serves as the cornerstone for authorship identification.
The multi-author writing style analysis task within PANQCLEF has continu-
ously advanced this essential research domain by developing challenges. The task
has undergone substantial transformation across multiple iterations: beginning
with the identification and clustering of individual authors [74], progressing to
distinguishing between single-author and multi-author documents [88, 43, 106],
advancing to determining the precise number of contributing authors [105], and
paragraph-level detection of style changes within documents [100, 101, 102, 103].

In the 2025 edition of the PAN multi-author writing style analysis task,
we asked participants to identify positions of writing style changes within a
set of documents. Building on previous editions that focused on the detection
of paragraph-level style changes, this year’s task advances to detecting style
changes at the sentence level, making the setting more realistic.

The dataset provided to participants consists of three datasets varying in the
difficulty of detection style changes: Fasy: Each document covers a variety of
topics, allowing participants to leverage topic information as a cue for detecting
changes in writing style. Furthermore, the stylistic similarity between sentences
in the document is rather low. Medium: The topics within a document are more
homogeneous, requiring approaches to rely more heavily on stylistic features
rather than topic differences to identify style changes. The stylistic similarity
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between sentences is moderate. Hard: All sentences within a document are of a
single topic and stylistically similar.

We control for topical diversity across the datasets to ensure that the focus is
on stylistic changes. In particular, the hard dataset eliminates topical differences
as a proxy signal for authorship, requiring the use of writing style analysis to
detect changes.

Data Set and Evaluation

We leverage data from the Reddit platform? for the multi-author writing anal-
ysis task. In particular, we select user posts from topic-specific subreddits, in-
cluding r/worldnews, r/politics, r/askhistorians, and r/legaladvice. This diverse
selection of sources allows for curating documents with varying levels of topical
coherence. To construct individual documents, we extract posts from these sub-
reddits, apply preprocessing steps (such as removing quotes, whitespace, emojis,
and hyperlinks), and then split the posts into individual sentences.

Based on this data, we construct documents by extracting sentences from a
single Reddit post, authored by two to four users. For each sentence, we com-
pute semantic and stylistic feature vectors, enabling the computation of topical
(semantic) and stylistic similarity between individual sentences. Based on these
similarities, we apply a mixing approach for all sentences of the individual au-
thors of the given Reddit post. We then concatenate sentences based on their
topical and stylistic similarity, allowing us to control for the difficulty of the style
detection task. For the three datasets, we configure the similarity threshold for
consecutive sentences to be (1) relatively high for the easy dataset, (2) moderate
for the medium dataset, and (3) small for the hard dataset. Each of the easy,
medium, and hard datasets contains 6,000 documents. We provided participants
with training, validation, and test splits for all three datasets. The training sets
contain 70% of the documents in each dataset, while the validation and test sets
contain 15% each. The test sets were withheld for the evaluation phase of the
competition.

The submitted approaches are evaluated on each dataset using the macro-
averaged F1-score calculated across all documents.

Results

The task received twelve valid software submissions and working notes papers.
The F1l-scores for each task achieved by the participants are shown in Table 5.
The best average F1-score across the three datasets was achieved by team wqd,
reaching a score of 0.870. For the easy dataset, Team stylospies achieved a
marginally better result, while scoring the fifth and third best results for the
medium and hard datasets, respectively. For the medium dataset, xxsu-team
achieved a marginally higher score. Generally, we observe that the individual
approaches perform quite differently on the three datasets. For instance, teams

Shttps://www.reddit.com/
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Table 5. Overall results for the multi-author writing style analysis task, ranked by
average F'; performance across all three datasets. Best results are marked in bold.

Team Easy F1 Medium F; Hard F;
wad [55] 0.958 0.823 0.830
xxsu-team [54] 0.955 0.825 0.829
stylospies [17] 0.959 0.786 0.791
team-tmu [37] 0.950 0.792 0.792
better-call-claude [76]  0.929 0.815 0.731
openfact [46] 0.919 0.771 0.752
cornell-1 [16] 0.909 0.793 0.698
batatavada-pict [73] 0.823 0.766 0.667
hhu [62] 0.761 0.666 0.642
ksu [2] 0.507 0.747 0.467
hellojie [20] 0.461 0.583 0.484
team-of-bf [56] 0.486 0.443 0.473
Baseline Predict 1 0.178 0.177 0.147
Baseline Predict 0 0.439 0.440 0.453

cornell-1 and better-call-claude perform better on the medium dataset than on
the easy and the hard datasets. Most submissions were able to outperform the
two simple baselines: one baseline that predicted a style change for each pair
of sentences, and one that predicted no style change for each pair of sentences.
Further details on the approaches taken can be found in the overview paper [104].

5 Generative Plagiarism Detection

Plagiarism detection has a long-standing tradition in PAN, with main tasks
running from 2009 [71] to 2015 [80]. Over time, the focus gradually shifted to-
ward more specialized intrinsic tasks, such as the still active authorship analysis
challenges. However, the recent breakthrough of generative Al has dramatically
transformed the landscape of plagiarism detection. For the first time in history,
LLMs can serve as so-called automatic plagiarists [5]. This shift inspired us to
revive a classic plagiarism detection task for 2025, this time centered on auto-
matically generated plagiarism using LLMs.

For the 2025 edition, we adhered to the well-established foundations of
the 2015 plagiarism detection task, particularly in evaluation methodology and
dataset formatting [5]. Participants received an annotated synthetic dataset of
pairs of documents (5, P), where S is a source document and P is the plagiarism
document in which the paragraphs p were replaced with paraphrased versions of
paragraphs s in S using LLMs without citation. This setup closely mirrors the
2015 PAN text alignment task?®, allowing us to evaluate how well past approaches
have aged.

*http://www.uni-weimar.de/medien /webis/events/pan-15/pan15-web/
plagiarism-detection.html
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5.1 Dataset

The synthetic dataset was constructed by first identifying the most semanti-
cally similar document pairs on arXiv, using embeddings from the SPECTER
model [21] applied to the 2025 release of arbiv®. We then sampled a subset of
100,000 documents with an even distribution across all arXiv categories (also
known as archives), to ensure a wide variety of topics. For each remaining doc-
ument pair (S, P), we aligned the most semantically similar paragraphs s and
p from S and P, respectively, based on three criteria. The alignment score was
computed as a weighted aggregate: 50% semantic similarity via SciBERT sen-
tence embeddings [7], 40% lexical similarity using TF-IDF vector similarity, and
10% section title similarity using SciBERT embeddings. The inclusion of simi-
larity in the title of the section helped discourage the alignment of paragraphs
from unrelated sections of the documents.

For each pair (S, P), we selected one of three LLMs: LLaMA-3 [1] (3.3 70B In-
struct), DeepSeek-R1 [25] (Distill-Qwen-32B) or Mistral [63] (7B Instruct v0.3),
and replaced all p in each aligned paragraph (s, p) with LLM-paraphrased ver-
sions s’ derived from paragraphs s in S. To support a more detailed analysis of
system performance, we established several categories of document pairs. First,
5% of the 100,000 pairs remained unchanged, i.e., both S and P are original
arXiv documents. An additional 20% of pairs do not contain any plagiarism,
but some paragraphs in P have been paraphrased by an LLM independently of
S. These examples are useful for evaluating systems that aim to detect LLM-
generated content rather than plagiarism specifically. The remaining 75% of
document pairs were constructed as described above.

We further classified the severity of plagiarism in P into three levels: low,
medium, and high. These refer to the proportion of paragraphs in P that were
replaced with paraphrased versions from S. In 30% of the document pairs, the
severity was low, with 20% to 40% of paragraphs replaced. In 40% of the pairs,
severity was medium, with 40% to 60% replaced. The remaining 30% had high
severity, where 70% to 100% of paragraphs in P were substituted.

Paraphrasing Prompts Each LLM used three types of prompts to generate
paraphrased plagiarism. These were distributed across document pairs as follows.
60% of the pairs used a simple prompt:

Paraphrase the given paragraph for a professional audience.
30% used a medium prompt:

Reformulate the given paragraph in a sophisticated manner
while preserving its meaning. Modify sentence structure,
reword phrases, and incorporate elements of general
knowledge to ensure coherence. The less token overlap, the
better.

®https://arbiv.labs.arxiv.org/
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Table 6. Plagiarism alignment dataset and LLM splits.

Splits / LLMs | Llama-3 DeepSeek-R1 Mistral | Altered | Original | Total
Train 18,423 79.80% 18,452  79.46% 6,265  79.65% 15,101 3,918 | 62,159
Validation 2,353 10.19% 2,383 10.26% 802 10.20% 1,919 518 7,975
Test 2,310 10.01% 2,38  10.28% 799 10.16% 1,919 490 7,904
Total | 23,086  42.62% 23,221  42.86% 7,866  14.52% | 18,939 | 4,926 | 78,038

The final 10% used a hard prompt that incorporated immediate context to help
the generated paragraph blend into its surrounding text. The prompt took the
following form:

Completely rephrase the given paragraph in your own words.
Feel free to incorporate elements from general knowledge to
ensure coherence, flow, and better understanding.

{context_before}

All prompts included additional instructions to output only the para-
phrased content, avoiding any explanatory text. Special tokens were used to
suppress verbose output, tailored to each LLM. For DeepSeek-R1, a custom
<thinking>...</thinking> block was used to suppress the model’s internal
reasoning steps, which would otherwise significantly slow down the generation. It
is worth noting that Mistral performed poorly in following prompt instructions.
It often produced explanatory content, hallucinated facts, or entered repetitive
output loops, an issue reminiscent of neural network architectures before the
attention mechanism era. In total, the final dataset consisted of 78,038 docu-
ment pairs, divided into training, validation, and test subsets. The training and
validation sets were provided to participants, while the test set was kept private
for the evaluation phase. The data splits and sizes is given in Table 6.

5.2 Evaluation

All systems were submitted and evaluated on the TIRA platform. The partici-
pants were tasked with identifying all the paragraphs s’ in P and aligning each
with the corresponding paragraph s in S. The training and validation sets con-
tained all alignments (s, s’) for each pair of documents (S, P), together with the
full text of both documents. The evaluation was carried out using the original
scripts from the 2015 PAN plagiarism detection task. The metrics included micro
and macro F1 scores as well as the established plagdet metric [70].

Four teams participated in the task by submitting software. Table 7 shows
the aggregated evaluation results for all submissions that we also compared to
the PAN baseline from 2012. We report the arithmetic mean of all evaluation
measures (micro precision, macro precision, micro recall, macro recall, micro
plagdet, and macro pladget) as main evaluation score. All submissions sub-
stantially improve upon the PAN-12 baseline that used lexical near-duplicate
detection. All submissions used some form of semantic similarity embeddings.
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Table 7. Arithmetic mean of all evaluation measures per submission for the plagiarism
detection alignment task.

Team Score System

chi-zi-zhi-xin-dui [81]  0.440 Sentence-BERT, MPNet, TF-IDF
jrluo [41] 0.263 E5 and MiniLM-L6
foshan-university [84] 0.400 TF-IDF and BERT classifier
yukino [64] 0.471 Glove embeddings

Baseline PAN-12 0.233 Lexical near-duplicate detection

Baseline Llama-3.3 [1] 0.269 Llama-3.3 70B embeddings
Baseline Qwen2 [4] 0.375 Qwen2 7b Instruct embeddings

Therefore, we added two additional baselines relying upon two typical embed-
ding models: Llama-3.3 70B and Qwen2 7B instruct. Team Yukino achieving the
highest score relying on Glove embeddings closely followed by Team Su, which
used an ensemble of multiple semantic embeddings combined with lexical TF-
IDF similarity. An extended evaluation will be available in the task overview [33].
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