Eva Zangerle
Eva Zangerle
Home
News
Publications
Projects
Service
Contact
Light
Dark
Automatic
article-journal
HSP Datasets: Insights on Song Popularity Prediction
Michael Vötter
,
Maximilian Mayerl
,
Günther Specht
,
Eva Zangerle
Cite
DOI
URL
Height Optimized Tries
We present the Height Optimized Trie (HOT), a fast and space-efficient in-memory index structure. The core algorithmic idea of HOT is …
Robert Binna
,
Eva Zangerle
,
Martin Pichl
,
Günther Specht
,
Viktor Leis
PDF
Cite
DOI
URL
Report on the 1st Workshop on the Perspectives on the Evaluation of Recommender Systems (PERSPECTIVES 2021) at RecSys 2021
Eva Zangerle
,
Christine Bauer
,
Alan Said
PDF
Cite
DOI
URL
Leveraging Affective Hashtags for Ranking Music Recommendations
Eva Zangerle
,
Chih-Ming Chen
,
Ming-Feng Tsai
,
Yi-Hsuan Yang
PDF
Cite
DOI
Support the underground: characteristics of beyond-mainstream music listeners
Dominik Kowald
,
Peter Müllner
,
Eva Zangerle
,
Christine Bauer
,
Markus Schedl
,
Elisabeth Lex
PDF
Cite
DOI
User models for multi-context-aware music recommendation
Martin Pichl
,
Eva Zangerle
PDF
Cite
DOI
User Models for Culture-Aware Music Recommendation: Fusing Acoustic and Cultural Cues
Eva Zangerle
,
Martin Pichl
,
Markus Schedl
PDF
Cite
DOI
Understanding User-curated Playlists on Spotify: A Machine Learning Approach
Martin Pichl
,
Eva Zangerle
,
Günther Specht
PDF
Cite
DOI
SentiStorm: Realtime Sentiment Detection von Tweets
Eva Zangerle
,
Martin Illecker
,
Günther Specht
PDF
Cite
DOI
Guided Curation of Semistructured Data in Collaboratively-built Knowledge Bases
Wolfgang Gassler
,
Eva Zangerle
,
Günther Specht
PDF
Cite
DOI
«
»
Cite
×