Eva Zangerle
Eva Zangerle
Home
News
Publications
Projects
Service
Contact
Light
Dark
Automatic
article-journal
Assessing aesthetic music-evoked emotions in a minute or less: A comparison of the GEMS-45 and the GEMS-9
Peer-Ole Jacobsen
,
Hannah Strauss
,
Julia Vigl
,
Eva Zangerle
,
Marcel Zentner
Cite
DOI
The Emotion-to-Music Mapping Atlas (EMMA): A systematically organized online database of emotionally evocative music excerpts
Hannah Strauss
,
Julia Vigl
,
Peer-Ole Jacobsen
,
Martin Bayer
,
Francesca Talamini
,
Wolfgang Vigl
,
Eva Zangerle
,
Marcel Zentner
Cite
DOI
Exploring the Landscape of Recommender Systems Evaluation: Practices and Perspectives
Recommender systems research and practice are fast-developing topics with growing adoption in a wide variety of information access …
Christine Bauer
,
Eva Zangerle
,
Alan Said
PDF
Cite
DOI
URL
Introduction to the Special Issue on Perspectives on Recommender Systems Evaluation
Evaluation plays a vital role in recommender systems—in research and practice—whether for confirming algorithmic concepts or assessing …
Christine Bauer
,
Alan Said
,
Eva Zangerle
PDF
Cite
DOI
URL
Report on the 3rd Workshop on the Perspectives on the Evaluation of Recommender Systems (PERSPECTIVES 2023) at RecSys 2023
Evaluation is a central step when developing, optimizing, and deploying recommender systems. The PERSPECTIVES 2023 workshop, held as …
Alan Said
,
Eva Zangerle
,
Christine Bauer
PDF
Cite
DOI
URL
Song lyrics have become simpler and more repetitive over the last five decades
Emilia Parada-Cabaleiro
,
Maximilian Mayerl
,
Stefan Brandl
,
Marcin Skowron
,
Markus Schedl
,
Elisabeth Lex
,
Eva Zangerle
Cite
DOI
Evaluating Recommender Systems: Survey and Framework
Eva Zangerle
,
Christine Bauer
PDF
Cite
DOI
URL
Report on the 2nd Workshop on the Perspectives on the Evaluation of Recommender Systems (PERSPECTIVES 2022) at RecSys 2022
Eva Zangerle
,
Christine Bauer
,
Alan Said
PDF
Cite
DOI
URL
HSP Datasets: Insights on Song Popularity Prediction
Michael Vötter
,
Maximilian Mayerl
,
Günther Specht
,
Eva Zangerle
Cite
DOI
URL
Height Optimized Tries
We present the Height Optimized Trie (HOT), a fast and space-efficient in-memory index structure. The core algorithmic idea of HOT is …
Robert Binna
,
Eva Zangerle
,
Martin Pichl
,
Günther Specht
,
Viktor Leis
PDF
Cite
DOI
URL
»
Cite
×